How a Motor Protein Breaks its Tracks

How a Motor Protein Breaks its Tracks

Kinesins are motor proteins found in eukaryotic cells that walk along microtubules. Members of a subfamily of kinesins, the kinesin-13s, do something different: they shorten microtubules to reshape the cytoskeleton during mitosis and other cellular processes. To identify the mechanism behind this atypical kinesin activity, Hernando Sosa, Ph.D., and his colleagues Mathieu Benoit and Ana Asenjo used cryo-electron microscopy to determine the structure of kinesin-13s bound to microtubules. The findings, published online on April 25 in Nature Communications, reveal for the first time how kinesin 13s are adapted to shorten microtubules rather than walking along them. The findings also suggest targets for modulating kinesin activity and microtubule dynamics that could lead to new anti-cancer drugs. Dr. Sosa is an associate professor of physiology & biophysics at Einstein.