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Cells have evolved to regulate the asymmetric distribution of
specific mRNA targets to institute spatial and temporal control
over gene expression. Over the last few decades, evidence has
mounted as to the importance of localization elements in the
mRNA sequence and their respective RNA-binding proteins.
Live imaging methodologies have shown mechanistic details of
this phenomenon. In this minireview, we focus on the advanced
biochemical and cell imaging techniques used to tweeze out the
finer aspects of mechanisms of mRNAmovement.

mRNA transport and cytoplasmic compartmentalization of
protein synthesis allow precise control over spatial and tempo-
ral gene expression and are essential for survival and response
to extracellular cues. It has been shown thatmRNA localization
is essential for cell fate determination (1), directed cell move-
ment (2), and tissue functionality (3). About 3 decades ago, it
was discovered that mRNA was asymmetrically distributed in
eggs and embryos (4) and in oocytes (5–7) and that this local-
ization was necessary to convey proper embryonic patterning
during development. Concurrently, it was found that mRNA
could also localize in differentiated somatic cells such as
migrating fibroblasts (8), oligodendrocytes (9), and neurons
(Table 1) (10). It is now understood that the localization of
specific mRNA targets, facilitated by RNA-binding proteins
(RBPs),3 is a highly conserved mechanism to spatially restrict
protein production, amplify local protein concentration, or
even direct integration intomacromolecular complexes, some-
times co-translationally (reviewed in Refs. 11–14). RBPs are
multifunctional regulators, as they are responsible for process-
ing, localizing, and controlling the translation of a host of
mRNA targets. Sometimes, a unique RBP can carry an mRNA
from the nucleus to its final destination in a translationally
repressed state. Local cues altering its association with the

mRNA may ensure compartmentalized translation (15, 16).
Many RBPs that govern mRNA localization are preferentially
expressed during critical developmental stages, where differen-
tiation, survival, or cellmigration is necessary to establish tissue
patterning (3). Modifying the expression of trans-acting RBPs
(i.e. knockdown/out or overexpression) or mutating cis-acting
regulatory elements present in mRNA targets leads to develop-
mental or cognitive deficiencies (17, 18) and a host of disease
states (19). Advances in new imaging technologies have allowed
the visualization and quantitation of mRNA localization in
fixed and living cells, facilitating a more detailed analysis of the
molecular mechanisms involved in the process.
In this minireview, we discuss the current knowledge of

mRNA movement from its birth to its final destination within
the eukaryotic cell and the impact that biochemical approaches
complemented by single molecule imaging techniques have
made on the field.

How Does mRNA Localize?

mRNA localization is directed by cis-acting localization ele-
ments (LEs), also known as zipcodes, typically present in the
3�-UTR of the transcript (Fig. 1, panel IV). These cis-acting
regulatory sequences can range froma fewnucleotides to�1 kb
in length and are recognized by diverse families of RBPs. Some
mRNAs have all the information required for successful local-
ization in a simple element. One of the earliest LE studied was
the chicken zipcode in �-actin mRNA. In these early experi-
ments, reporter plasmids expressing different elements of the
3�-UTRof�-actinmRNAnarrowed the cis-acting elements to a
54-nucleotide zipcode region that mediated localization of the
transcript to the leading edge of chicken fibroblasts (20). More
recently, biochemical and structural characterization of this
�-actin zipcode led to the identification of a bipartite LE within
28 nucleotides that is specifically recognized by ZBP1 (zipcode-
binding protein 1; see “�-Actin mRNA: The Targeted mRNA”)
(21, 22). Another example is the myelin basic protein mRNA,
which requires an 11-nucleotide element (called A2RE) in its
3�-UTR that is recognized by heterogeneous nuclear ribonu-
cleoprotein (hnRNP) A2 to be properly transported in oligo-
dendrocytes (23).
Zipcodes present inmRNAsmay also be recognized by RBPs

on the basis of secondary structures or stem-loops. For exam-
ple, Drosophila bicoid mRNA contains a helical region where
only secondary structure, not primary sequence, is important
for transport (24). The primary sequences of LEs present in
gurken,K10, hairy, and the I factor retrotransposonmRNAs are
all distinct but may have similar three-dimensional structures.
These LEs are recognized by Egalitarian, an RNA adaptor pro-
tein involved in dynein-directed transport, illustrating that
sequence diversity can enable the recruitment of similar local-
ization machinery (25, 26). A comparable phenomenon has
been shown in yeast. TheASH1 (asymmetric synthesis ofHO1)
mRNA contains four different zipcodes (E1, E2A, E2B, and E3)
spread through the transcript that do not show homology in
primary sequence, but each one is able tomediatemRNA local-
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ization to the bud tip using the same RBP, She2p (SWI5-depen-
dent HO expression 2 protein) (27, 28).
A large number of LEs have been identified and character-

ized in different systems. However, a clear pattern in zipcode
primary sequence or structure has not yet emerged, indicat-
ing the heterogeneity of these motifs (extensively reviewed
in Ref. 29).

Role of Nuclear Encoding in mRNA Localization

Processing of the pre-mRNA in the nucleus influences the
cytoplasmic fate of mRNA, illustrating the elegant integra-
tion of spatiotemporal events that can occur within an indi-
vidual cell. Pre-mRNA modifications include the addition of
the cap structure to the 5�-end, the addition of poly(A) to the
3�-end, and the deposition of the exon-exon junction com-
plex proteins with the removal of introns during splicing
(30). Deposition of RBPs onto the transcript during these
events in the nucleus determines its final destination. For
instance, splicing at the first intron of Drosophila oskar
mRNA supports posterior pole cytoplasmic localization of
the transcript with Y14, a component of the exon-exon junc-
tion complex and essential factor of the transport machinery
(31, 32). In yeast, She2p is the RNA adaptor protein involved
in myosin-based transport required for ASH1 mRNA to be
exported to the cytoplasm and transported to the daughter
cell by binding the mRNA and linking it to the cytoskeleton
(33, 34). Once in the cytosol, the messenger ribonucleopro-
tein particle (mRNP) may gain or lose additional factors that
determine whether the mRNA is freely diffusive, actively
transported upon the cytoskeleton by molecular motors
(kinesins, dyneins, and myosins), protected from degrada-
tion, able to translate, or anchored to a compartmentalized
domain (Fig. 1 and supplemental figure and movie)
(reviewed in Refs. 11 and 13). mRNAs are transported in
large and diverse multiprotein complexes. In addition to
RBPs, it has been suggested that noncoding RNAs and
microRNAs might be components of these large complexes
as well (35).

FIGURE 1. The many roads of mRNA movement. Shown is a simulation of
mRNA motility within cells. mRNA tracks represent mRNA movements as a
function of time, coded from purple/blue to red. Panel I, fibroblast Cell. a,
nuclear mRNAs are subjected to corralled diffusion during much of the tortu-
ous path through the nucleus due to chromatin confinement. b, in motile
cells, mRNA is mainly diffusive, although it occasionally travels along the cyto-
skeleton. mRNAs localized to the leading edge have larger diffusion coeffi-
cients on average (c), whereas the movement of perinuclear mRNAs is more
confined (d). Panel II, Drosophila oocyte. e, although oskar mRNA is largely
diffusive, localization of the mRNA in oocyte stage 9 is accomplished through
a slight bias in active transport of mRNA on microtubules toward the poste-
rior pole (P; arrow) (74). A, anterior; D, dorsal; V, ventral. Panel III, neuron. f,
neuronal mRNAs depend largely on microtubule-based transport for localiza-
tion into dendrites. g, Arc mRNAs are seen to be docked beneath dendritic
spines, indicating putative domains that maintain mRNAs in specific loca-
tions. Panel IV, schematic representation of an mRNA. The cap structure in the
5�-end, the poly(A) tail in the 3�-end, the 5�-UTR, the ORF, the 3�-UTR contain-
ing an LE, and the RBPs associated are depicted.

TABLE 1
Some mRNAs, RBPs, and types of mRNA movement discussed in text
CamKIIa, Ca2�/calmodulin-dependent protein kinase II; EJC, exon-exon junction complex.
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Ripping, Clipping, and Chipping Away at mRNP
Composition

Defining the RBPs that associate with specific mRNAs can
yield critical information about how mRNA trafficking and
localization are regulated in different cellular compartments.
Biochemical methodologies to study mRNA interaction with
specific RBPs usually rely on standard immunoprecipitation
and/or affinity purification techniques, followed by the identi-
fication and characterization of the molecules that are part of
the complexes. For example, RNAaffinity purificationmethods
led to the identification of ZBP1, the founding member of the
VICKZ (Vg1 RBP/Vera, IMP-1,2,3, CRD-BP, KOC, ZBP1) fam-
ily of RBPs (36), in the localization of �-actin mRNA in fibro-
blasts (37). RNA affinity chromatography also led to the iden-
tification of the novel protein 40LoVe, a member of the hnRNP
D family of proteins, in the vegetal localization ofVg1mRNA in
Xenopus oocytes. 40LoVe was found to bind specifically to two
different late LEs of the Vg1mRNA and to be a necessary com-
ponent of the Vg1 LE RNP (38). hnRNP I and Vg1 RBP/Vera
had previously been described as factors associating with Vg1
mRNA in the nucleus and being exported into the cytoplasm
with the transcript (39). In addition, in vivo and in vitro studies
showed that transport ofVg1mRNA to the vegetal cortex of the
oocyte implicates different microtubule plus-end-directed
motors (40, 41). Kinesin-1 associates with Vg1 LE RNA; block-
ing its function by using specific antibodies prevents RNA
localization, suggesting a direct role for kinesin-1 in vegetal
localization of the mRNA. Kinesin-1 also interacts with kine-
sin-2, and both motor proteins seem to facilitate Vg1 mRNA
movement to its final destination, providing new mechanistic
insight into this motor-driven RNA transport process in frog
oocytes (41).
Cross-linking and immunoprecipitation (CLIP) (42) is an

effective and powerful technique for identifying LEs and has the
advantage of isolating RNA-protein complexes under physio-
logical conditions. CLIP coupled with high-throughput se-
quencing has recently identified an LE in the 3�-UTR ofGIRK2
(G-protein-activated inwardly rectifying potassium (K) chan-
nel 2) mRNA that mediates Nova-dependent localization of its
transcript in primary neurons (43). This finding suggests an
attractive hypothesis in which the loading of the splicing factor
Nova onto intronic sequences in the nucleus could be coupled
to the mechanism of localization directed by the 3�-UTR of the
same mRNA.
Characterization of zipcode sequences that are required for

localizing mRNA involves visualizing the subcellular distribu-
tion of reporter RNAs carrying putative zipcode fragments.
Fusing an essential LE to a reporter RNA should result in a
localization pattern within the cell similar to that observed for
the endogenous mRNA. Conversely, deletion of regions or
pointmutations that disrupt localization can be used to see how
certain sequences affect mRNA localization. When the RBP is
known, putative LEs can be easily characterized on the basis of
their binding ability in vitro using EMSA (21, 44). Information
regarding the binding specificity and affinity is valuable; how-
ever, spatial (and temporal) evidence of RNA-protein associa-

tion within cells is imperative and better determined through
imaging methods.

Seeing Is Believing

Originally, intracellular localization of mRNAs was only
observed using in situ hybridization techniques in fixed sam-
ples (8, 45). In situ detection remains the standard tool for
examining the distribution ofmRNAs in fixed cells, tissues, and
larger samples likeDrosophila or zebrafish embryos. Lécuyer et
al. (46) characterized the distribution patterns of �3000 tran-
scripts during early developmental stages of Drosophila
embryogenesis by using high-resolution fluorescence in situ
hybridization procedures. Surprisingly, 70%of themRNAs ana-
lyzed showed different subcellular localization rather than uni-
form distribution, suggesting that mRNA localization mecha-
nisms are involved in the control of the majority of mRNAs.
Althoughmost of the analysismethods to studymRNA local-

ization in fixed cells have been qualitative (8, 47), recent
advances have resulted in more objective and quantitative
measurements for mRNA distribution (48, 49). Additionally,
due to improvements in sensitivity and resolution of mRNA
detection using live microscopy, it is now feasible to visualize
single molecules of mRNA to quantify their movements in real
time (50–53). Direct observation and quantitation of ensemble
mRNA distributions enable further exploration of mRNA
dynamics and movement mechanisms.
Prior to the widespread use of high-resolution single mRNA

live imaging, mRNA localization was proposed to operate
through the following mechanisms: (a) directional transport
along cytoskeletal elements, (b) random diffusion and local
trapping of mRNAs, (c) vectorial export from the nucleus and
trapping, or (d) local protection from degradation (13). Thus
far, live imaging techniques (reviewed extensively in Ref. 54) in
a variety of cell lineages have provided examples of all of these
behaviors. Not surprisingly, the method utilized by a cell to
produce an asymmetric distribution ofmRNA is finely tuned to
be appropriate for the particular morphology and time con-
straints that the cell must overcome. For instance, during yeast
cell division, ASH1 mRNA is preferentially localized into the
bud tip of the daughter cell, ensuring asymmetry of HO gene
expression,which is essential formating type switching (55, 56).
Pioneering theMS2 system to visualizemRNA for the first time
in live cells, Bertrand et al. (57) demonstrated thatASH1mRNA
localization was due to movements consistent with myosin-
directed motility. Since then, the MS2 technique has been
expanded to mammalian cells and even whole organisms (50,
58–60).
RNA Movement within the Nucleus—Shav-Tal et al. (61)

imaged single reporter mRNAs in the nucleus, and they found
that movements of mRNA were governed by the laws of diffu-
sion and not active transport (Fig. 1, panel I, a, and supplemen-
tal figure). Furthermore, they did not observe mRNAs docking
in particular nuclear domains, indicating that mRNP assembly
likely occurs co-transcriptionally. Additional studies showed
that although mRNA length does not affect overall mRNA dif-
fusion kinetics in the nucleus (�0.005–0.02 �m2/s), larger
transcripts take longer to reach the cytoplasm due to increased
frequency of corralled diffusion (62), a consequence of an
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increased tortuous path through the chromatin (63). Mor et al.
(62) also calculated that, on average, mRNA takes �20 min to
travel from the transcription site to the nuclear pore for export
(Fig. 1, panel I, a, and supplemental figure), and interestingly,
inclusion of introns expedited export rates but not nucleoplas-
mic diffusion rates (64). Single molecule tracking analysis of
mRNA through labeled nuclear pores utilizing live cell imaging
determined that nuclearmRNA export takes less than one-fifth
of 1 s (51), an order of magnitude slower than the transport of
proteins (65). Remarkably, in 10% of the export events, mRNAs
remained docked at the nuclear pores for longer periods of time
(approximately seconds), indicating a rate-limiting step, possi-
bly related to quality control (51, 66).
RNA Movement within the Cytoplasm—Similar to the

nucleus, movement of mRNAs in the cytoplasm of cells is also
largely governed by diffusion, although it can be up to two times
faster due to a less restrictive environment (Fig. 1, panel I, and
supplemental figure and movie) (62). Fusco et al. (58) were the
first to observe that more than half of lacZ reportermRNAs are
freely diffusing with a diffusion coefficient of 0.45 � 10�9

cm2/s. The remainder of the mRNAs are either static or cor-
ralled, corresponding to�20% associatedwith the cytoskeleton
and the remaining confined by microtubule-based domains.
Five percent of themRNAsmove alongmicrotubules in a direc-
tional manner at rates of 1–1.5 �m/s for lengths of up to 3 �m
(Fig. 1, panel I, b, and supplemental figure and movie) (58).
Interestingly, addition of the�-actinmRNAzipcode element to
the reporter mRNA increased the frequency of active transport
to 20% as well as the length of transport, implying that cis-
acting elements may influence localization. A comparable
mechanism is exploited during Drosophila oogenesis, where
localization of oskar mRNA to the posterior pole must be
accomplished at the appropriate developmental stage to allow
germ line differentiation (reviewed in Ref. 67). Fixed cell imag-
ing revealed that intact microtubules (68), kinesin (69), and
several trans-acting factors such as Staufen and hnRNP A/B
(70–73) are necessary for oskar mRNA localization, implicat-
ing active transport as the localizationmechanism. Contrary to
expectations of concertedmovement to the pole, live cell imag-
ing of oskarmRNArevealed that themajority ofmRNAdiffuses
randomly, with only 13% being actively transported (Fig. 1,
panel II, e) (74). Examination of actively transported mRNAs
revealed a 7% bias in transport in the direction of the posterior
pole due to a subtle bias in microtubule orientation. Likewise,
nanos mRNA localizes to the posterior pole of Drosophila
embryos during a critical developmental window, albeit via an
alternative mechanism. nanos localization relies on diffusion
and actin-dependent entrapment of mRNA at the pole, receiv-
ing help from the forces of cytoplasmic streaming toward the
pole (75). bicoidmRNA localization to the anterior Drosophila
oocyte in the later stages of oogenesis depends on yet another
mechanism. Dynein continuously transports bicoid mRNA
toward the anterior part of the oocyte, as docking there is insuf-
ficient to maintain localization (76). It is logical to speculate
that the most energetically efficient and thus preferred method
of mRNA localization is diffusion and docking. In the absence
of these options, or alternatively, if the timing of mRNA local-
ization is a limiting factor, cells such as neurons may rely pri-

marily on active transport to maintain an asymmetric mRNA
distribution.
RNA Movement in Neurons—Neurons are highly polarized

cells that rely primarily on active transport mechanisms for
localizing mRNAs into dendrites (Fig. 1, panel III) (77, 78). The
field of mRNA kinetics in neuronal dendrites remains largely
observational, as investigations under way are still characteriz-
ing the movements as a precursor to understanding how they
are achieved. One of the earlier visualizations of mRNA in neu-
ronal dendrites revealed that a reporter mRNA (GFP-MS2-
Ca2�/calmodulin-dependent protein kinase II 3�-UTR) exhib-
ited kinesin- and microtubule-dependent oscillatory motion
(79). Additional imaging studies of fluorescent RBPs have also
found that mRNP granules exhibit oscillatory behavior in den-
drites at speeds up to 2 �m/s (Fig. 1, panel III, f) (50, 80). Anal-
ysis of single Arc (activity-regulated cytoskeleton-associated)
mRNAs in dendrites revealed that approximately half of the
mRNA population was motile (81). This motile population
exhibited both small bidirectional jumps and longer tracks at
constant speed. The population of lengthier translocations
occurred in both directions, with anterograde movements
being longer than the retrograde ones.
Live cell imaging of mRNAmovement in neuronal dendrites

has been quantitative for studying the contribution of RBPs to
localization.Currently, evidence indicates that RBPs in neurons
alter the efficacy of active transport and may be an attractive
target for regulation ofmRNAmovement.Mutation of theDro-
sophila FMR1 gene (fragile X mental retardation 1) was found
to decrease the net distance of labeled mRNAs, implicating
fragile X mental retardation protein (FMRP) as a “processivity
factor” that increases mRNA interaction with motors (82).
However, the total distance traveled was unaltered because the
decrease in directional mRNA movement was compensated
with an increase in oscillatory behavior in FMRP mutant neu-
rons. Furthermore, the presence of wild-type FMRP in the neu-
ron allowed increased mRNA shuttling from the soma into the
dendrites as well as an increased mobile fraction of dendritic
mRNA. ForChicmRNA, FMRP knockdown resulted in a rever-
sal in the directional bias of movement from 58% anterograde
(WT) to 74% retrograde (Drosophila FMR1mutants). A subse-
quent study of FMRP-regulated mRNA localization in neurons
confirmed that FMRP increases the fraction of motile particles
as well as the displacement of dendritic Ca2�/calmodulin-de-
pendent protein kinase IImRNA (83). An additional dimension
of the regulation of mRNA localization in neurons is the synap-
tic activity-induced alteration of mRNA transport, which is
proposed to play a role in synaptic plasticity. Rook et al. (79)
found that depolarization induces an increase in anterograde
mRNA motility into the dendrites. Dictenberg et al. (83) stud-
ied the increase in dendritic FMRP upon stimulation of
metabotropic glutamate receptors and found that following
stimulation, FMRP increases its association with its delegated
motor, the kinesin KIF5, bringing it into the dendrites. Consist-
ent with this, knock-out of FMRP reduces the steady-state
localization of FMRP targets and does not exhibitmetabotropic
glutamate receptor stimulation-induced mRNA localization,
suggesting the role of RBPs in activity-controlled transport of
mRNAs essential for synaptogenesis.
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The hypothesis that local translation is necessary for syn-
apse-specific modifications suggests that mRNA should be
present at the right time in a specific location to immediately
contribute to the local protein pool. An example of this behav-
ior isArcmRNA, which is retained in domains directly beneath
spines in a UTR-dependent manner (Fig. 1, panel III, g) (84).
This raises intriguing questions as to how specific mRNAs are
targeted and retained at the appropriate places within the cell.
Dynes and Steward (81) observed that actively transported
mRNAs may travel vectorially to a destination at the dendritic
spine (Fig. 1, panel III). This strongly suggests that transported
mRNAs may be responding to local cues to stall or be retained
in certain domains.

�-Actin mRNA: The Targeted mRNA

�-Actin mRNA can be transported and targeted to subcellu-
lar compartments to undergo local translation (15, 53). Over
the last 30 years, �-actin mRNA localization has provided a
model system for understanding the mechanisms and purpose
of mRNA localization within eukaryotic cells. Biochemical,
structural analysis, and imaging approaches have provided an
elegant understanding of how the zipcode and zipcode-binding
proteins act together to ensure the fate of the transcript once it
is synthesized in the nucleus.

�-Actin mRNA requires the presence of a zipcode in its
3�-UTR to be targeted to the leading edge in fibroblasts (20) and
in dendritic filopodia and axonal growth cones (85, 86). ZBP1
has been identified by affinity purification methods (37) as the
key factor that binds the �-actin mRNA zipcode in the nucleus
and is involved in localization as well as translational repression
of its mRNA target in the cytoplasm (15, 87–89). ZBP2, the
mouse homolog of the human hnRNPproteinKSRP (K-homol-
ogy splicing regulator protein), also binds to the �-actin
3�-UTR in the nucleus and facilitates nuclear ZBP1 association
with the transcript and further cytoplasmic localization in
fibroblasts (87, 88, 90). Structural studies have recently shown
that ZBP1 KH34 (third and fourth hnRNP K-homology
domains) specifically binds the bipartite �-actin 3�-UTR ele-
ment, with KH4 and KH3 recognizing 5�-CGGAC-3� and
5�-(C/A)CA(C/U)-3� sequences, respectively (21, 22). Aboli-
tion of the function of the zipcode by mutation of the element
itself, treatment with specific antisense oligonucleotides, or
knockdown/out of ZBP1 protein leads to the mislocalization of
�-actin mRNA and subsequent alterations of cell morphology,
motility, and adhesion as well as failures in synaptic growth and
deficiencies in dendritic spine number, maturation, and
arborization (2, 20, 22, 53, 85, 86, 91–94).
Live imaging of �-actin mRNA in different regions of COS

cells revealed that restricted mRNA is able to diffuse freely in
the leading edge of the cell (Fig. 1, panel I, c, and supplemental
figure), but in the perinuclear region, mRNA diffusion is
restricted (Fig. 1, panel I, d, and supplemental figure). Disrup-
tion of the actin cytoskeleton by cytochalasin D delocalizes the
mRNA from the leading edge and increases its mobility in the
perinuclear region, indicating that the cytoskeletal actin envi-
ronment strongly contributes to the location of �-actin mRNA
within fibroblast cells (48, 95). Once at the leading edge,�-actin
mRNA dwells around adhesions in fibroblasts to provide a

novel protein source for adhesion maturation, which in turn
regulates directedmotility (53). In neurons, growth factor stim-
ulation induces�-actinmRNAandZBP1protein transport into
growth cones (86). Local translation of �-actin mRNA requires
phosphorylation on ZBP1 Tyr-396 by Src kinase, a known
active component of leading edge adhesions. Similarly, this reg-
ulatory mechanism was shown to be necessary for neuron
growth cone turning toward a chemotactic cue (15, 94, 96–98).
Although work until now has focused largely on the �-actin

mRNA-ZBP1 complex, it is worthwhile to mention that this
interaction is not exclusive. �-Actin mRNAmay be bound and
regulated by many other proteins, and in turn, ZBP1 can bind
and regulate at least 116 other mRNAs (22, 99, 100). Post-tran-
scriptional regulation requires the proper interaction of multi-
ple RBPs along with themRNA. The present challenge involves
solving the intricate network of associations of RBPs with
motors and multiple mRNA targets. This will allow a better
understanding of the molecular mechanisms that govern
mRNA movement and localization in live cells.

Conclusions

In recent decades, it has become evident that localization of
mRNAs within cells is a widespread and evolutionarily con-
served strategy for asymmetric distribution and concentration
of mRNP complexes at specific sites. A vast number of mRNAs
show subcellular distribution. RNAmovement and localization
are cell-specific. Local environmental conditions, cytoskeletal
constraints, and specific docking sites are important for diffu-
sion-based localization. In situations where active transport is
necessary, regulation is exerted on cytoskeletal orientation and
the association of RBPs with motors. In all of the aforemen-
tioned examples, mRNAmovement is probabilistic, with biases
introduced by zipcodes andRBPs.Currently, efforts are focused
on understanding similarities and differences between diverse
mRNA subtypes that localize in the same manner and the
molecular mechanisms that govern their targeting to specific
subcompartments within the cell as well as the biological sig-
nificance associated with the localization event. The field of
mRNA imaging was previously hindered by technological lim-
itations; however, it is now at a turning point, where we are able
to visualize with accurate precision the methods of mRNA
localization. The dynamics and stoichiometry of mRNP com-
positions need to be revealed. Combining high-throughput bio-
chemical, bioinformatic, and imaging methodologies with
functional analyseswill provide answers to the questions of how
a specific mRNA moves and localizes within cells and its phe-
notypic function.
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