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Abstract
Time-integrated fluorescence cumulant analysis (TIFCA) is a data analysis technique for
fluorescence fluctuation spectroscopy (FFS) that extracts information from the
cumulants of the integrated fluorescence intensity. It is the first exact theory that
describes the effect of sampling time on FFS experiment. Rebinning of data to longer
sampling times helps to increase the signal/noise ratio of the experimental cumulants of
the photon counts. The sampling time dependence of the cumulants encodes both
brightness and diffusion information of the sample. TIFCA analysis extracts this informa-
tion by fitting the cumulants to model functions. Generalization of TIFCA to multicolor
FFS experiment is straightforward. Here, we present an overview of the theory, its
implementation, as well as the benefits and requirements of TIFCA. The questions of
why, when, and how to use TIFCA will be discussed. We give several examples of
practical applications of TIFCA, particularly focused on measuring molecular interaction
in living cells.
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1. INTRODUCTION

Fluorescence fluctuation spectroscopy (FFS) is a promising tool
for measuring the concentration, mobility, and interactions with great

spatiotemporal resolution directly in living cell (Digman & Gratton,

2011; Slaughter & Li, 2010). FFS exploits fluorescence intensity fluctuations

of fluorophores passing through a small observation volume created by a

confocal or two-photon microscope. Each passage of a fluorescent molecule

through the small volume leads to a short burst of detected photons.

Collectively, these diffusing molecules give rise to a stochastic fluorescence

signal. Various statistical analysis tools are used to extract physical and chemical

properties of the fluorescently labeled molecules from the stochastic fluores-

cence signals. For example, the amount of time it takes for the molecule to

diffuse through the observation volume depends on its diffusion constant.

Fluorescence correlation spectroscopy (FCS; Berland, So, & Gratton, 1995;

Magde, Elson, & Webb, 1972; Rigler, Mets, Widengren, & Kask, 1993;

Schwille, Kummer, Heikal, Moerner, & Webb, 2000; Tetin et al., 2006;

Webb, 2001) is widely used to measure the diffusion time from the autocor-

relation function of the fluorescence signal. The amplitude of the fluorescent

burst depends on the number of fluorophores carried by the molecule. The

brightness, defined as the average number of photons per second emitted

by the molecule, captures the fluctuation amplitude information. The photon

counting histogram (PCH) analysis (Chen, Müller, So, & Gratton, 1999) and

fluorescence intensity distribution analysis (FIDA; Kask, Palo, Ullmann, &

Gall, 1999) measure the molecular brightness by fitting the experimental

PCH to a theoretical distribution. Both brightness and diffusion information

have been used to characterize fluorescent samples, as described in previous

chapters. Here, we focus on time-integrated fluorescence cumulant analysis

(TIFCA), a method that unifies both brightness and diffusion into an exact

and simple analytical model.

The capability of FFS to accurately measure experimental parameters

depends, just like any other techniques, on the signal/noise ratio (SNR) of

the data (Müller, Chen, & Gratton, 2000; Saffarian & Elson, 2003). Unfortu-

nately, the achieved SNR in the cellular environment is sufficiently low that

resolving heterogeneous biological samples is typically not feasible (Müller

et al., 2000), which severely limits the potential of FFS application in cells.

However, many factors that affect SNR are either already optimized or be-

yond our direct experimental control. Here, we focus on the sampling time
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and consider its effect on the SNR. Conventional FFS analysis assumes a short

sampling time compared to the characteristic timescale in order to capture the

dynamics of fluctuation. However, this leads to low SNRbecause the number

of photons detected per molecule is small. A longer sampling time results in an

improved signal, but the existing theory breaks down because of particle dif-

fusion during the prolonged sampling time. Fluorescence cumulant analysis

(Müller, 2004), in contrast to histogram analysis, allows an exact treatment

for any sampling time. Cumulants are a set of measures that provide an alter-

native to themoments of a distribution and have properties particularly suitable

for studying random variables (Kendall & Stuart, 1977a; Saleh, 1978). For

example, cumulants are additive for independent random variables and each

cumulant of a different order contains independent information. TIFCA is

based on factorial cumulants of the photon counts that is modeled exactly

for arbitrary sampling times (Wu & Müller, 2005).

TIFCA offers advantages compared to conventional FFS analysis tools.

First, statistical analysis shows that extending the sampling time by rebinning

increase the SNR of cumulants (Wu & Müller, 2005). This result is espe-

cially important for higher order cumulants, which are notoriously difficult

to measure experimentally, but are essential for resolving species.While typ-

ical cell experiments only provide two statistically significant cumulants, by

choosing a longer sampling time, we are often able to determine the next

higher order of cumulants. The additional information provided by the

higher order cumulants is crucial for the resolution of mixtures. Second,

TIFCA collectively analyzes the cumulants for a range of sampling times

by rebinning the original data. This approach preserves the temporal infor-

mation of the original data and at the same time increases the SNR. The

sampling time-dependent analysis of TIFCA integrates brightness and diffu-

sion time into the same theory, which effectively combines the strength of

both FCS and PCH. Fluorescence intensity multiple distribution analysis

(FIMDA) was introduced to extend PCH/FIDA to long sampling times

(Palo, Mets, Jäger, Kask, & Gall, 2000; Perroud, Huang, & Zare, 2005)

by introducing a sampling time-dependent brightness and number of mol-

ecules. However, this approach is an approximation that effectively corrects

the first two cumulants of the probability distribution, but the higher order

cumulants are not exact. Because resolution of species relies on higher order

cumulants, the approximation introduced by FIMDA is of concern and may

introduce biases in the analysis of FFS experiments. TIFCA is free of such

potential biases. Third, TIFCA introduces a simple relationship between

cumulants and the FFS parameters brightness, number of molecules, and
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diffusion time. Since each order of cumulant contains independent informa-

tion, the number of statistical significant cumulants directly specifies the

number of independent parameters that can be determined from the data.

We derived a theory to calculate the statistical error of cumulants based

on the moments-of-moments technique. With this theoretical error analy-

sis, one can predict the number of statistically significant cumulants for spe-

cific experimental condition. This capability is very useful for feasibility

studies and experimental design. Fourth, TIFCA is particularly suitable for

multicolor experiments (Wu, Chen, & Müller, 2006). It is straightforward

to generalize the TIFCA theory to an arbitrary number of colors, each mea-

sured in a separate detection channel. Fifth, the number of data points fitted

by TIFCA is largely independent of the intensity. In contrast, the number of

data points in PCH analysis scales with intensity, which is an especially im-

portant consideration for multicolor experiments, since the number of data

points scales with the maximum photon counts raised to the power of the

number of detection channels. To illustrate this point consider a two-color

experiment (equals two-detection channels) with a maximum photon count

of 100 for a given short sampling time. Signal/noise considerations typically

restrict statistically significant cumulants up to the fourth order, which leads

to 14 distinct cumulants that need to be fitted. Rebinning of data to longer

sampling times does not affect the number of cumulants. PCH, on the other

hand, has to fit 104 data points. In contrast to TIFCA, rebinning increases the

maximum photon counts of PCH. For example, rebinning by a factor of 100

leads to a maximum photon count of�10,000, which translates into a PCH

function with �108 data points. So fitting of data by PCH is computation-

ally far more expensive than for TIFCA.

So what can TIFCA do and when to use TIFCA? This is summarized in

Box 5.1.
2. THEORY AND IMPLEMENTATION OF TIFCA

Consider a fluorescent species with brightness l in a single-color
experiment. The nth factorial cumulant of photon counts k[n] is given by

Wu and Müller (2005):

k n½ � Tð Þ¼ gnNlnBn T ;td; rð Þ; ½5:1�
whereN is the average number of molecules in the observation volume and

td is the diffusion time of the molecule. The parameters gn and r describe the



BOX 5.1 What TIFCA does and when to use TIFCA
a. Theoretical analysis. TIFCA provides a simple expression for the factorial

cumulants of photon counts. Each cumulant can be determined for an
arbitrary sampling time and arbitrary number of detection channels.

b. Improves signal/noise of FFS experiment. By systematically changing the
sampling time, the signal/noise of cumulants can be optimized.

c. Analyze experimental data. TIFCA also presents a practical algorithm to fit
experimental data. Brightness, diffusion constant, and the number of
molecules are obtained simultaneously from the fit. Since the sampling time
effect has been explicitly taken into account, there is no undersampling bias
(Müller, 2004). Our programs written in IDL or Fortran are freely available for
download.

d. TIFCA is particularly suited for multicolor experiment. The method offers a
succinct way of data reduction for multicolor experiment. It is easily
generalized to any number of colors.
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point spread function (PSF) of the observation volume and are determined

through a calibration experiment (Palmer & Thompson, 1989; Wu &

Müller, 2005). The parameter T is the sampling time and the function

Bn(T;td,r) is called the binning function (Wu & Müller, 2005), which sum-

marizes the dependence of cumulants on the sampling time.Mathematically,

the nth binning function involves an integration of the nth order correlation

function. The integration cannot be solved analytically for arbitrary PSFs.

In practice, the binning function is calculated numerically for the 3D Gauss-

ian PSF and saved in a data table. Specific values of the binning function are

extracted from the data table by interpolation. For short sampling time

T�td, the binning function is approximated by Bn(T;td,r)�Tn. In

this scenario, the cumulant is reduced to a very simple analytical function

k[n](T )¼gnN(lT )n. In Fig. 5.1, we plot Bn/T
n up to sixth order as a func-

tion of sampling time for td¼1. When the sampling time is short, Bn/T
n

goes to one as expected. In general, Bn/T
n decays as a function of T, with

the higher order binning function decaying faster. The cumulants of a mix-

ture of noninteracting fluorescent species are given by the sum of the

cumulants of each individual species according to the additive property of

cumulants for independent random variables.

It is straightforward to generalize the theory of TIFCA to multivariate

cumulants of arbitrary number of channels, that is, bivariate cumulants

describe dual-color FFS data. For simplicity, we limit our discussion to
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Figure 5.1 The theoretical binning function Bn(T;td,r) up to sixth order. The function
Bn/T

n is plotted as a function of the binning time T. The binning functions are calculated
for a diffusion time td¼1 and a PSF squared beam waist ratio r¼25.
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cumulants for dual-color experiments. The fluorescence is split with a

dichroic mirror into two paths with different detectors, which produce

two streams of photon counts. As a convention, we use R to refer to the

red channel and G to refer to the green channel. Each molecule is charac-

terized by the brightness values in each channel (lR,lG) and the [m,n]th

order bivariate factorial cumulant k[m,n] given by Wu et al. (2006):

k m;n½ � ¼Ngmþnl
m
Rl

n
GBmþn T ;td; rð Þ; ½5:2�

where the number of molecule N, the g-factors, and the binning function

are defined the same as in the case of single-color TIFCA.

One important aspect of TIFCA is the error analysis (Kendall & Stuart,

1977b; Wu et al., 2006; Wu & Müller, 2005). The variance of a factorial

cumulant is a measure of its statistical accuracy and used as the weight in

the nonlinear least-square fit to the theoretical model to evaluate the

goodness-of-fit of the data. The variance is also a good indicator of how

many statistical significant cumulants are present in the data. One can deter-

mine the variance of cumulants by dividing the data into small segments;

calculate the cumulants of each segment and the experimental variance of

the average. In addition, we can use a technique called moments of moments

to calculate the variance directly as a function of cumulants (Kendall &

Stuart, 1977b).
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The theory we presented so far assumes that the photodetectors are ideal.

Real detectors are never ideal. Particularly, dead time and after pulsing

cause significant changes in the photon counting statistics and have to be

taken into account to obtain the correct description of experimental data

(Hillesheim, Chen, & Müller, 2006; Hillesheim & Müller, 2003). An after

pulse is a fake pulse following the detection of a real photon count.

Deadtime describes a period of time after the registration of a photon in

which the detector is unable to generate photon signals. A detailed descrip-

tion of these nonideal effects on fluorescent fluctuation experiments, espe-

cially PCH analysis, has been worked out (Hillesheim et al., 2006;

Hillesheim & Müller, 2003). To calculate nonideal detector influenced

cumulants, we use Taylor expansion to express the deadtime/after pulsing

influenced cumulant in terms of ideal cumulants (Wu et al., 2006). Practi-

cally, correct brightness and concentration values are recovered over a con-

centration range of three orders of magnitudes when nonideal detector

effects are taken into account.

So far, we discussed the theoretical underpinning of TIFCA. Next, we

describe how to implement TIFCA practically. Since the cumulant function

is not analytical, nonlinear least-squares data fitting has to be done to deter-

mine TIFCA parameters from the data. In Box 5.2, we summarize the pro-

cess of data analysis. We have written data analysis software in IDL and in

Fortran, which we distribute freely (http://singerlab.org/supplements).

3. APPLICATION OF TIFCA
3.1. TIFCA improves the signal/noise of FFS experiments

The cumulant k̂ n½ � is calculated from the photon counting data by software.

The relative error dk̂ n½ � of the factorial cumulant k̂ n½ � is defined as

dk̂ n½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var k̂ n½ �

� �q
=k̂ n½ � and is a measure of the noise-to-signal ratio. A rel-

ative error larger than one indicates that the cumulant is not statistical sig-

nificant. By rebinning the neighboring photons, TIFCA is able to

decrease the relative error of the cumulant. This is due to the increased num-

ber of photons collected per sampling time for a single molecule. On the

other hand, with each rebinning step, the number of data points decreases,

which increases the relative error. Which of the two factors dominates de-

pends on the reduced binning time T/td. We have shown that for a short

sampling time, the relative error dk̂ n½ � scales as
ffiffiffiffiffiffiffiffiffiffi
T 1�n

p
and for a long

http://singerlab.org/supplements


BOX 5.2 How to do TIFCA
a. Calculate experimental factorial cumulants

Since commercial FCS systems do not directly provide the experimental fac-
torial cumulants, they have to be calculated after data acquisition. We used the
software MathStatica to derive formulas of factorial cumulants up to the 20th or-
der and the variance of the factorial cumulants up to the 10th order by the tech-
nique of moments-of-moments (Kendall & Stuart, 1977b; Wu et al., 2006; Wu &
Müller, 2005). The unbiased estimator of a factorial cumulant is just an algebraic
function of raw moments and the total number of data points. Typically, the raw
photon counting data are acquired at short sampling time. We rebin the data to
determine the factorial cumulants for different sampling times. The procedure is
performed as follows: we feed the recorded sequence of photon counts into soft-
ware to calculate the experimental factorial cumulants of photon counts of sam-
pling time T. To get cumulant for a sampling or binning time of 2T, we add
neighboring photon counts together to get a new sequence of photon counts
with binning time 2T. This process is repeated to calculate the cumulants for bin-
ning times of specific integer multiples of T. By rebinning, we calculate the fac-
torial cumulants over binning times that cover three orders of magnitude.
b. Fitting of the cumulants

We fit the experimentally determined factorial cumulants k̂ n½ � to theoretical
cumulants k[n] determined with a nonlinear least squares fitting program. The re-
duced w2 of the fit is given by

w2 ¼ 1

K�pð Þ
X
T

Xr0
n

k̂ n½ � Tð Þ�kn Tð Þ� �2
Var k̂ n½ � Tð Þ� � :

The value of K is the total number of cumulants used in the fit and p is the number
of free fitting parameters of the model.
c. Calibration

The theoretical expression of cumulants contains parameters that are best
determined empirically. The g-factors depend on the point spread function
(PSF) of the instrument. We use a 3D Gaussian PSF to calculate the binning func-
tion, which is sufficient to describe the temporal behavior of the cumulants. How-
ever, the absolute value of the g-factors have to be determined empirically,
because the experimental PSF deviates to some degree from the 3D Gaussian
model. We fix the first two g-factors to that of the 3D Gaussian, g1¼1 and
g2¼0.3535. To calibrate high order g-factors, we perform experiments on a sim-
ple fluorescent dye solution that serves as a good representation of a single
brightness sample. We fit the first four cumulants simultaneously to determine
brightness l, the diffusion time td, the average number of molecules N, g3,
and g4. Alternatively, we can derive a theoretical expression of g-factors based
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BOX 5.2 How to do TIFCA—Cont'd
on a parametric PSF. For example, using the algorithm of PCH calibration (Huang,
Perroud, & Zare, 2004), we derive gn ¼ g3DGn 1þF1ð Þn�2= 1þF2ð Þn�1, where the
F-parameters are used to calibrate the PSF for PCH function. The advantage of
this approach is that it predicts higher order g-factors that are difficult to deter-
mine by an experimental calibration.

Relative error of cumulants
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Figure 5.2 The relative error is plotted as a function of binning time for the second (A)
and the third (B) factorial cumulant (symbol, experiment; line, theory). A U2OS cell
expressing EGFP is measured by FFS in the nucleus for 1 min. The error of the cumulants
is calculated with the moments-of-moments technique. Increasing the binning time
leads to an initial decrease of the relative error until a minimum is reached, which is
followed by a steady increase in the relative error. The decrease of relative error for
k̂ 3½ � is particularly important since initially the relative error is larger than 1, which means
it is not statistically significant at the original data acquisition frequency.
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sampling time as
ffiffiffiffiffiffiffiffiffiffi
Tn�1

p
(Wu & Müller, 2005). Therefore as long as n>1,

rebinning reduces the relative error of k̂ n½ � for short sampling but increase the

relative error at long sampling time. This is demonstrated in Fig. 5.2A and B,

where we plot the relative error of the second and the third cumulant for

EGFP measured in a living cell. The experimentally observed dependence

of the relative error exactly mirrors the behavior predicted by theory. The

relative error decreases initially with each increase in sampling time, reaches

a minimum and then increases at long sampling times. The decrease in rel-

ative error is particularly significant for the third cumulant. At the original

data sampling time, the relative error is larger than one, indicating that k̂ 3½ � is
not statistical significant. Rebinning reduces the relative error and makes k̂ 3½ �
significant, and thus available for data fitting.
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The concept of choosing a sampling time to minimize the relative error

has important implication for FFS experiments, because it maximizes the

number of independent parameter that can be determined from the data

(Müller, 2004). For singe-color FFS experiment, each species is character-

ized by three parameters: l,td, and N. The diffusion time td is determined

from the shape of the time-dependent cumulant function k[n](T). Therefore,
two cumulants are needed to identify the brightness and number of mole-

cules of each species. For example, a binary mixture requires the knowledge

of four cumulants to identify its components. If the experimental data only

contain statistically significant cumulants up to second order, resolving two

species is impossible. However, if the third-order cumulant is statistically

significant and the brightness of one species is known independently, it is

possible to determine the brightness of the second species.
3.2. TIFCA resolves a binary mixture with three cumulants
in living cells

Previously, we have demonstrated that it is possible to measure cumulant up

to seventh order in an in vitro experiment (Müller, 2004). However, the

achievable SNR in live-cell measurement is significantly limited. Neverthe-

less, as we have just shown in the last section, it is possible to measure three

statistical significant cumulants with a single-color FFS experiment in living

cells. With two cumulants, it is possible to define an apparent brightness

(Chen, Wei, & Müller, 2003). The normalized brightness is defined as

the ratio between the apparent brightness and the monomer brightness.

By measuring the normalized brightness as a function of concentration

(brightness titration), the oligomerization and affinity of protein interaction

can be directly quantified in living cells. This is a powerful and robust tech-

nique and has been successfully applied to measure protein oligomerization

(Chen et al., 2003). However, in certain circumstances, the brightness titra-

tion is incomplete and the oligomerization cannot be conclusively deter-

mined. To illustrate this point, we measured the nuclear receptor retinoid

X receptor fused with EGFP (EGFP-RXR) (Chen et al., 2003). The exper-

iment was done without the presence of ligand. In Fig. 5.3A, the normalized

brightness is plotted as a function of EGFP-RXR concentration. The

brightness increases slightly as a function of EGFP-RXR concentration, in-

dicating that the protein oligomerizes weakly. However, the brightness only

increases roughly to 1.5 at the highest concentration. Since the oligomeri-

zation number must be an integer number, a fractional number less than two
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Figure 5.3 Resolving species using single-color TIFCA in cells. EGFP-RXR is transfected
in U2OS cells. Each cell wasmeasured for 30 s in the nucleus in the absence of ligand. (A)
The normalized brightness of the sample, normalized by themonomer EGFP brightness,
was plotted as a function of concentration of EGFP-RXR. The brightness reaches 1.5 at
high concentrations, indicating that oligomerization occurs even in the absence of li-
gand. But the level of oligomerization remains unknown. (B) The same data were fitted
with a two-species TIFCA model. Brightness of one species is fixed to EGFP, while all
other parameters are allowed to vary freely. The brightness of the second species recov-
ered from the fit is plotted as a function of the total concentration of EGFP-RXR. The data
are divided into two groups. In some cells (blue circle), the second species remains to be
a monomer. These cells typically have a low concentration of EGFP-RXR. In other cells,
the brightness of the second species clusters around 2, suggesting that a fraction of
EGFP-RXR in these cells oligomerizes and forms dimers.
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suggests that the system is a mixture of monomer and oligomers. However,

the apparent brightness is unable to reveal the nature of the oligomer.

With the knowledge of the third cumulants, it is possible to get more

information from the data. Since one of the species must be monomeric,

we fit the data to a two-species model with the brightness of one species

fixed to that of monomer EGFP. Three cumulants allows us to determine

the brightness of the second species. In Fig. 5.3B, we plot the brightness

of the second species as a function of total EGFP-RXR concentration. Note

that each point is a measurement of a single cell. To aid the visual interpre-

tation, we divide the brightness into two groups. The first group of bright-

ness (blue circle) is roughly one, which indicates that for these cells the

second species is also a monomer. These data correspond to the data points

in Fig. 5.3A with apparent brightness close to one. The other group of

brightness (red diamond) is scattered around two, which demonstrates that

the second species is a dimer. It has been shown that EGFP-RXR forms
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dimer in the presence of ligand. The current data show that the dimer exists

even in the absence of applied ligand.
3.3. Calibrate an mRNA imaging system with TIFCA
Imaging mRNA with single-molecule sensitivity in live cells has become

an indispensable tool for the quantitative studying of RNA biology. The

MS2/PP7 system has been extensively used due to its unique simplicity

and sensitivity (Bertrand et al., 1998; Chao, Patskovsky, Almo, & Singer,

2008; Golding, Paulsson, Zawilski, & Cox, 2005; Larson, Zenklusen,

Wu, Chao, & Singer, 2011; Zimyanin et al., 2008). Here, we use the

PP7 system as an example (Chao et al., 2008; Larson et al., 2011). In this

labeling method, a genetically encoded sequence derived from the bacteri-

ophage PP7 is inserted into the gene of interest. The sequence folds into a

unique stem–loop structure that forms the PP7 binding site (PBS) for the

PP7 capsid protein (PCP).When cells expressing the gene carrying PBS also

express PCP fused to a fluorescent protein (PCP-FP), the mRNA of interest

is fluorescently labeled by PCP-FP. To increase the signal of mRNA over

the background of free PCP-FP, multiple copies of PBS are utilized. Quan-

titative fluorescence imaging and spectroscopy require knowledge of the

labeling efficiency of mRNA. A uniform labeling of mRNA makes it easy

for quantitative interpretation of experimental results. FFS offers a simple

method to measure the number of CP-FPs bound to an mRNA by the nor-

malized brightness of an mRNA (Wu, Chao, & Singer, 2012). Furthermore,

the mRNA size is significantly larger than free CP-FP and diffuses much

slower. Therefore, one can distinguish them by both brightness and diffusion

time. TIFCA (Wu &Müller, 2005) is ideal for the analysis since it incorpo-

rates both brightness and diffusion time into the same analysis model.

We constructed a plasmid coding for cyan fluorescent protein (CFP),

with 24�PBS inserted after the stop codon in the 30-untranslated region

(Fig. 5.4A). The plasmid was transiently transfected together with nuclear

localization signal (NLS)–tandem dimeric version of PP7 coat protein

(tdPCP)-EGFP in U2OS cells (Wu et al., 2012). The NLS was used to

sequester the nonbound coat protein in the nucleus and we have used a

single-chain ttdPCP (Wu et al., 2012). The experiment was done at the

two-photon laser wavelength 1010 nm so that CFP will not be excited.

We analyzed the data with TIFCA. A one-species model was not able to

fit the data, which was expected since both mRNA and free tdPCP-EGFP

are present. We proceeded to fit the data with a two-species model, which
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Figure 5.4 Calibrate mRNA brightness. (A) The schematic diagram of the mRNA used in
the experiment. The mRNAs encodes cyan fluorescent protein (CFP) in its open reading
frame. After the stop codon, 24�PBS are inserted in the 30-untranslated region. (B) The
plasmid was transiently transfected together with a plasmid which expresses nucleus
localization signal nucleus localization signal (NLS)–tandem dimeric version of PP7 coat
protein (tdPCP)-EGFP in U2OS. Here, we have used a single-chain tdPCP. The NLS was
used to sequester the protein in the nucleus. A cell was measured in the perinuclear
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describe the data within experimental uncertainty. An example of the fit is

presented in Fig. 5.4B. The brightness of mRNA is determined from the fit.

In Fig. 5.4C, we plot the normalized brightness of the CFP-24�PBS

mRNA labeled by NLS–tdPCP-EGFP as a function of total EGFP concen-

tration. Each symbol represents a measurement of a single cell. Even though

there are different concentrations of mRNA and tdPCP between cells, the

brightness and therefore the number of coat proteins binding to the mRNA

is relatively constant. The average number of NLS–tdPCP-EGFP on one

mRNA is 23	5, that is, within error, equal to the expected maximum

occupancy for 24�PBS.
3.4. Resolve an EGFP/EYFP binary mixture in living cells
Dual-color TIFCA of two-channel FFS data characterizes each species by

four parameters: lR,lG,td, andN. The diffusion time td is again determined

from the shape of the time-dependent cumulant function k[m,n](T). There-
fore, three cumulants are needed to identify the remaining three parameters

of each species. As we have just demonstrated, it is possible to get statistically

significant cumulants up to the third order. Therefore, a total of nine mea-

surable cumulants are present: k[1,0], k[0,1], k[2,0], k[1,1], k[0,2], k[3,0], k[2,1],
k[1,2], and k[0,3], which opens up the possibility to directly resolve two spe-

cies in a cell with a single measurement (Wu et al., 2006).

To test the efficacy of dual-color TIFCA for resolving a binary mixture

of fluorescent proteins, we use EGFP and EYFP as a model system. The

spectrum of EGFP and EYFP is plotted in Fig. 5.5A together with the trans-

mission curve of the dichroic mirror. We first calibrate their brightness by

measuring cells transfected with only one of the proteins. Dual-color

TIFCA fits recover the brightness of each of the two proteins in each chan-

nel. The brightness are combined into a two dimensional vector and are

plotted in Fig. 5.5B (EGFP,þ; EYFP, X). Each point in the plot is a unique

combination of red and green brightness, which can be viewed as a signature
region for 3 min at the wavelength 1010 nm. A two-species TIFCA model fits the data
and yield the mRNA normalized brightness of 26.1, the diffusion constant of 0.35 mm2/s
and a concentration of 13 nM. The four panels in the figure represent the first four fac-
torial cumulants of photon counts (symbols) and the theoretical fit to Eq. (5.2) (lines). (C)
A series of cells were measured and analyzed as described in (B). The normalized mRNA
brightness values, which measure the number of EGFP on mRNA, plotted as a function
of total concentration of NLS–tdPCP-EGFP, are determined by dividing the total fluores-
cence intensity by the EGFP brightness. The data indicate that the average number of
EGFP on mRNA is 23	5, implying that 24�PBS are fully occupied.
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EGFP (green dotted line) and EYFP (solid line) are plotted together with the transmis-
sion curve (dashed line) of the dichroic mirror used to separate the fluorescence into
two channels. (B) EGFP and EYFP are transiently expressed in COS cells. Cells were mea-
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of a molecular species. Next, cells are cotransfected with EGFP and EYFP

and are measured for 5 min with a sampling time of 50 ms. The single-species
fit to these data returns reduced w2 values that range from 10 to 100

depending on the cotransfection ratio of the two proteins, which indicate
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that we are dealing with mixtures. Figure 5.5B shows the molecular bright-

ness recovered from a two-species fit. It is clear from the brightness signature

that species I (diamond) is EGFP and species II (square) is EYFP. The fit also

recovers the concentration of the proteins, which are not shown.

3.5. Measure protein interaction with heterospecies partition
analysis

In the previous section, we showed that it is possible to obtain nine statis-

tically significant bivariate cumulants in live-cell experiments and a binary

protein mixture can be reliably resolved with a single measurement. Thus,

dual-color brightness analysis has tremendous potential for studying protein

heterointeractions. However, heterointeractions between two proteins, D

and A, result generally in a mixture of at least three species (D, A, DA,

DA2, etc.). Unfortunately, a general analysis method for extracting the

brightness of three or more species from a heterogeneous sample is not avail-

able. Recently, we introduced heterospecies partition analysis to tackle a

general interaction scheme between two proteins DþnA$DAn. We label

protein D with EGFP and A with mCherry. With proper choice of filters, it

is possible to eliminate the green channel fluorescence of mCherry

completely (Fig. 5.6A). HSP combines all heterointeracting molecules into

a single heterospecies H¼{D, DA, DA2, . . .} (Fig. 5.6B). Using the two

first-order and three second-order cumulants, and with the proper choice

of filter set, the red channel brightness of heterospecies lH is analytically re-

lated to the stoichiometry n and the degree of binding (Wu, Chen, &

Müller, 2010).

We apply HSP to study the interaction between RXR and a coactivator

transcription intermediate factor-2 (TIF2) (Wu et al., 2010). Cells

expressing mCherry-RXR and EGFP-TIF2 are measured in the nucleus

of CV-1 cells. The brightness of the heterospecies is determined by dual-

color TIFCA fit to the two-species HSP model. The red channel brightness

of the heterospecies is shown in Fig. 5.6C as a function of mCherry-RXR

concentration. Without ligand the interaction between RXR and

coactivator is weak with less than one NR bound per coactivator molecule

on average. The strength of interaction increases if the ligand is present. At

the lowest concentration, the brightness of the heterospecies is close to that

of EGFP, indicating that EGFP-TIF2 and mCherry-RXR do not interact

with each other. The brightness increases with growing RXR concentra-

tion and saturates at a brightness, which corresponds to the hetero-trimer

TIF2–RXR2. Thus, the experiment demonstrates that RXR and TIF2
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interact in the presence of ligand and two nuclear receptors are recruited by

one coactivator. Previous in vitro and in vivo experiments based on fragments

of nuclear receptor and coactivator shows distinct binding stoichiometry

(Chen & Müller, 2007; Margeat et al., 2001; Teichert et al., 2009). With

full-length proteins, a 2:1 stoichiometry between NRs to coactivator was ob-

served,which confirms the bindingmodel suggested from interaction between

NR and its hormone response elements (Xu, Glass, & Rosenfeld, 1999).

4. CONCLUSION

In this chapter, we reviewed the technique of TIFCA for the analysis
of FFS experiment. TIFCA differs from other methods by using the factorial

cumulants of photon counts to extract information. In contrast to PCH,

FIDA or FIMDA, TIFCA is exact for all sampling times. A central concept

of the theory is the binning function, which characterizes the influence of

sampling time on cumulants. The error analysis of cumulants allows exper-

imentalist to measure or predict whether experimental conditions are suffi-

cient for resolving species and helps in identifying optimal experimental

conditions. Nonideal photodetector effects on cumulants are also taken

into account in the theory. In practice, parameters are reliably recovered

for a concentration range of three orders of magnitude. Statistical

significant higher order cumulants established by TIFCA help in resolving

binary mixtures and in determining the oligomerization of proteins that is

difficult to achieve with other analysis methods. By combining heterospecies
fluorescence contributions of mCherry to the green detection channel. (B) Conceptual
picture illustrating the projection of a mixture of brightness species into two different
classes. One class contains the molecules of A that are not interacting with D, which is
referred to as free species (A, A2, . . ., Ar). The other class includes all species that contain
the molecule D (D, DA, DA2, . . ., DAs) and is called heterospecies. The FFS parameters
describing the heterospecies characterize the binding between D and A. (C) Full-length
EGFP-TIF2 and mCherry-RXR are cotransfected in CV-1 cells. The cells were measured in
the nuclei for 1 min. The bivariate factorial cumulants are fitted by dual-color TIFCA to a
two-species HSP model. As a result, the brightness of the heterospecies is recovered.
The red channel brightness of the heterospecies is plotted as a function of mCherry-
RXR concentration. The theoretical brightness of a hetero-dimer and that of a
hetero-trimer are shown as solid lines for reference. In the absence of ligand (triangle),
there is only weak interaction. In the presence of ligand 9-cis retinoic acid (diamond),
EGFP-TIF2 interacts strongly with mCherry-RXR and binds to as many as two
mCherry-RXR molecules at high concentrations.
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partition analysis with dual-color TIFCA, we are able to determine the

oligomerization and binding curve of a general type of protein hetero-

interactions. This paper demonstrates the significant potential of TIFCA

as a sensitive and robust technique to characterize molecular interaction

in living cells.
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