
 

Machine Learning:  A brief introduc�on to Gradient Boos�ng 

Overview:   In the Introduction to Random Forest tutorial, we reviewed decision 

trees, which are the building blocks for a Random Forest.  Decision trees are also the 

building blocks for Gradient Boosting, but in a very different way.     

What is Gradient Boosting? 

Like Random Forest, Gradient boosting is also an ensemble of decision trees.  Unlike 

Random Forest however, which is focused on an ensemble of high variance (i.e.: fully-

grown) trees, Gradient Boosting is focused on an ensemble of very shallow trees 

(sometimes called decision stumps). 

Suppose we have a data set consisting of 100 patients with a tumor diagnosed, which can 

be further classified into one of two distinct subtypes.   Fig 1 is an example of a very 

shallow decision stump with a goal of predicting whether a patient with a particular 

tumor has subtype A or B.   From this decision tree, we can assume that age has some 

association with whether a patient has tumor subtype A or B.   Recall, the decision tree 

fitting process will select the best predictor and cut point from the set of available 

predictors using some criterion of node purity to define “best”.   

 

 

 

 

 



 

 

 

 

 

 

          Fig 1. Example of a decision stump. 

The decision stumps used in gradient boosting can be, and often are, deeper than this. 

Especially if we want to allow interactions between variables.  For example, if we wanted 

to model the interaction between age and diabetes status, we could fit a decision tree with 

an additional level. 

 

 

 

 

 

 

           

Fig 2. Example of a decision tree with an interaction effect.  The presence of 

diabetes only impacts prediction when the patient is under 60 years old. 
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All pa�ents 
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A shallow decision stump (like what we have above in Fig 1 and 2) is what is called a 

low variance, high bias classifier.  This means that if we sampled repeatedly from the 

target population (theoretically that is; we mean that if we have many similar data sets 

consisting of a random sample of patients from the population of patients with the 

disease of interest) and fit a decision stump each time to predict subtype A vs B, we likely 

would not get much variation in our resulting predictions (low variance).   Additionally, 

we likely would not predict tumor subtype very well (high bias) because we have made the 

prediction function too simplistic (age < 60 is probably not the only discriminator of 

whether someone has tumor subtype A or B).   

An extreme example of a high bias/low variance classifier is if we used the sample 

proportion to predict subtype.  In our sample, we have 40% of patients with subtype A.  If 

we used this as a simple prediction tool, we would simply assign a probability of subtype 

A of 40% to every new patient.  While this is indeed likely to be low variance (predictions 

based on subtype A proportion would not vary too wildly from 40% in similar samples), it 

is also high bias because it is likely much too simple of a prediction tool compared to the 

true function that gives rise to tumor subtypes.   

With Random Forest, we combine low bias, high variance trees with lots of leaves 

(nodes) to yield a powerful low bias and low variance (through the averaging process) 

classifier.   Gradient boosting is combining high bias, low variance trees.  But unlike 

Random Forest, Gradient Boosting is not just taking a simple average across the trees in 

the ensemble to build a powerful classifier.  So… what is it doing? 

 

 



General steps in Gradient Boosting: 

1. Predict outcome and compute the log odds of prediction based on the sample 

proportions in the input data set 

2. Compute the residuals from this naïve prediction  

3. Build decision tree # 1 using the residuals in the previous step as the outcome 

variable 

4. Obtain the predictions from decision tree # 1 and compute the log odds  

5. Use the new residuals to build decision tree # 2 

6. Obtain the predictions from decision tree # 2 and compute the log odds  

7. Repeat until prediction does not improve 

Gradient Boosting is therefore carefully building an ensemble of shallow decision trees 

that are improving prediction (getting the predicted value closer and closer to the true 

value) with each new decision tree built from the residuals of the previous tree. 

Let’s go back to the tumor subtype example: 

 

 

 

          Fig 3. Tumor Subtype example 

 

Parent node: 

All pa�ents 

Pr(subtype A) = 0.40 

Pr(subtype B) = 0.60 



Let’s create an indicator variable for subtype A.  Y=1 when a patient has subtype A, 0 is 

subtype B. 

Step 1:  Get the initial prediction and log odds 

Based on the overall proportion of subtype A in the data, our best (naïve) prediction for a 

new patient using no additional variables would be 0.40, and correspondingly the natural 

log of the odds would be ln(0.40/(1-0.40)) = ln(0.667) = -0.405.   

Step 2:  Compute the residual (Yi – predictioni) for patient i in the sample 

(i=1,2,…100) 

Recall, patients with subtype A were assigned a value of 1 and subtype B assigned a value 

of 0.  Therefore, the residuals of the initial prediction of 0.40 are (1-0.40) = 0.60 for 

people with tumor subtype A and (0-0.40) = -0.40 for people with tumor subtype B.  The 

prediction 0f 0.40 is the same for everyone right now because it is based only on the 

observed proportion of subtype A tumors in the data.  Later in the process, the 

predictions will vary across patients based on their specific covariate patterns.   

Step 3:  Build a decision tree using the residuals as the new outcome variable 

It is important to note here that we are using a regression decision tree, not a 

classification decision tree, because we are modeling the residuals (which will be 

continuous) we found in step 2.  Patients with subtype A have positive residuals while 

patients with subtype B have negative residuals.  The goal here is find a variable that 

splits the data into two daughter nodes such that large positive residuals will all be in one 

node and the negative residuals will all be in the other node without much overlap. 

We have collected many data points for each patient (demographics, tumor 

characteristics, comorbidities, etc.) that are potential predictors of the residual.  A 



decision tree automatically finds the best splitting variable and cutpoint at each node to 

create daughter nodes with lowest mean square error.  Recall, we use the Gini Index to 

measure purity in the classification tree.      

 

Fig 3 shows the resulting decision stump after this process.  As you can see, age contains 

some relevant information because node 1 contains patients < 60 years old and many of 

the positive residuals.  Node 2 contains patients 60 and older and many of the negative 

residuals.   

 

 

 

 

 

 

 

 

           Fig. 3: The first decision stump for Gradient Boosting 

 

 

 

Node 1: 

Age < 60  

Subtype A:  n=25 (residual = 0.60) 

Subtype B: n=5 residual=-0.40) 

Average residual= 13/30 = 0.4333 

 

Node 2: 

Age ≥ 60  

Subtype A:  n=15 (residual = 0.60) 

Subtype B: n=55 (residual=-0.40) 

Average residual =-13/70 -0.186 

 

 

Parent node: 

All pa�ents 

Pr(subtype A) = 0.40 

Pr(subtype B) = 0.60 



Step 4:  Compute the updated log odds and probabilities  

For each daughter node we first compute the following over all k observations in the 

node: 

𝛾𝛾 =  
∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑘𝑘
𝑖𝑖=1

∑ 𝑝𝑝𝑖𝑖 (1 − 𝑝𝑝𝑖𝑖)𝑘𝑘
𝑖𝑖=1

 

where p is the previous predicted probability for individual i in the node 

In node 1 we get: 

                                 𝛾𝛾 = �
(25 𝑥𝑥 0.60)+ (5 𝑥𝑥 −0.40)�
�30 𝑥𝑥 0.40 𝑥𝑥 (1−0.40)�

= 13
7.2

=  1.806 

And in the right daughter node (node 2), consisting of patients 60+ years old the log 

odds: 

𝛾𝛾 =
(15 𝑥𝑥 0.60)  + (55 𝑥𝑥 − 0.40)

(70 𝑥𝑥 0.40 𝑥𝑥 (1 − 0.40)) 
=  −13/16.8 =  −0.774 

Finally, we can compute the updated log odds in node k: 

       Updated log odds in node k = previous log odds + learning rate x 𝜸𝜸 

The learning rate tells us how much we are going to update those log odds due to the 

predictions from the new decision stump.  We will set it to be 0.10 for now. 

                  Updated log odds = -0.405 + (0.10 x 1.806) = -0.225 for node 1 

                 Updated log odds = -0.405 + (0.10 x -0.774) = -0.483 for node 2  

Converting back to probabilities (exp(log odds)/(1+exp(log odds))) we get our new 

prediction of 44.4% for patients in node 1 and 38.2% for patients in node 2.   



For a patient who is 54 years old, the original (naïve) predicted probability 

for subtype A was 40%, which was updated after the first decision tree to be 

44.4%. 

While the predicted probability was raised, it was not raised nearly as much as it could 

have been given the new decision tree has 83% subtype A in node 1.  This is where the 

learning rate comes in.  Gradient Boosting does not allow each new prediction to 

change our previous prediction too much, especially when we specify a small learning 

rate.   We therefore need more decision trees to really improve these predictions, 

especially with smaller learning rates. 

Step 5:   Use these new probabilities to compute a new set of residuals and 

then fit a decision tree.   

For a patient who has subtype A and is 54 years old, the true status is 1.0 and the 

predicted status is 0.444.  The residual therefore is 1-0.444 = 0.556.  For a patient who is 

age 80 years old, the residual is 1-0.3823 = 0.618.   

For a patient with subtype B who is 54 years old the residual is 0-0.444 = -0.444 and for a 

patient who is 80 years old the residual is 0-0.382 = -0.382. 

We use these new residuals to compute decision tree #2.  Suppose we get the tree 

below, which now separates the data based on diabetes status: 

 

 

 

 



 

 

 

 

 

 

           Fig. 4: The second decision tree for Gradient Boosting 

 

Step 6:  Obtain the predictions from decision tree # 2 and compute the log 

odds  

Just as before, we need to compute the 𝛾𝛾 value for the new nodes.  For brevity, we will 

compute the value for node 1 and leave the computation for node 2 up to you: 

For node 1 (diabetes=no): 

                                𝛾𝛾 = �
(25 𝑥𝑥 0.556)+ (5 𝑥𝑥 0.618)+(5𝑥𝑥(−0.382))+(5𝑥𝑥(−0.444))�

(30 𝑥𝑥 0.444 𝑥𝑥 (1−0.444)+10 𝑥𝑥 0.382 𝑥𝑥 (1−0.382)) =  1.317 

                  Updated log odds = -0.225 + (0.10 x 1.317) = -0.093 for node 1 

Converting back to a probability, we see that for a 54 year-old patient 

without diabetes, the probability of tumor subtype A is now predicted to be 

exp(-0.093)/(1+exp(-0.093)) = 0.477 

To recap, for this patient, the probability of tumor subtype A was originally 40%, updated 

to 43.3% after the first decision stump was taken into account, and is now 47.8% after the 

Node 1:  Diabetes =no  

Subtype A < 60:  n=25 (residual = 0.556),           
60+: n=5 (residual=0.618) 

Subtype B <60: n=5 (residual=-0.444) 

60+: n=5 (residual=-0.382) 

Node 2:  Diabetes=yes 

Subtype A < 60:  n=0                                        
60+: n=10 (residual=0.618) 

Subtype B <60: n=0  

60+: n=50 (residual=-0.382) 

All pa�ents 

Pr(subtype A) = 0.40 

Pr(subtype B) = 0.60 



second decision tree.  So moving in the right direction!  Additional trees, using other 

combinations of informative predictors, will likely refine this prediction even more (Step 

7 – repeat until prediction does not improve).   

 

In summary, Gradient Boosting is a powerful algorithm for classification that 

uses weak decision trees (sometimes called decision stumps) successively, reducing 

previous errors.  Even if you do not care about the math behind Gradient 

Boosting, knowing the general algorithm will give you a good sense of what is 

going on and why a statistician or data scientist may suggest building a 

prediction model using Gradient Boosting.  Some hyperparameters you need to 

think about for Gradient Boosting are the depth of the trees, how many trees you want to 

use, and the learning rate.    

 

Where can I read more about these different classifiers?                                                                         

There are many excellent online resources that will allow you to more fully 

understand machine learning and the various algorithms used. 

 
 


