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SUMMARY

Messenger RNA decay measurements are typically
performed on a population of cells. However, this ap-
proach cannot reveal sufficient complexity to pro-
vide information on mechanisms that may regulate
mRNA degradation, possibly on short timescales.
To address this deficiency, we measured cell cycle-
regulated decay in single yeast cells using single-
molecule FISH.We found that two genes responsible
for mitotic progression, SWI5 and CLB2, exhibit a
mitosis-dependentmRNA stability switch. Their tran-
scripts are stable until mitosis, when a precipitous
decay eliminates the mRNA complement, preventing
carryover into the next cycle. Remarkably, the spec-
ificity and timing of decay is entirely regulated by
their promoter, independent of specific cis mRNA
sequences. The mitotic exit network protein Dbf2p
binds to SWI5 and CLB2 mRNAs cotranscriptionally
and regulates their decay. This work reveals the
promoter-dependent control of mRNA stability, a
regulatory mechanism that could be employed by
a variety of mRNAs and organisms.

INTRODUCTION

Precise analysis of decay kinetics is necessary to understand

when and how a decay regulator functions, and single-cell,

single-molecule techniques could advance our understanding

ofmRNA turnover. For example, the kinetic behavior of individual

RNA polymerase II (RNAPII) transcribing a gene (reviewed in

Ardehali and Lis, 2009) provides a precise quantification of the

contribution ofmRNA synthesis to the cellular pool of transcripts.

However, to date, no such approach has been available for

measuring mRNA turnover. Traditional techniques have relied

on normalization of decay signal and on a large sample of cells,

genetically modified or treated with inhibitors, to stop transcrip-

tion and thus obtain kinetic information of a decaying mRNA
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species (reviewed in Passos and Parker, 2008). Furthermore,

the accuracy of decay measurement varies with the technique

used. For example, in budding yeast, half-lives of an individual

mRNA species quantified by different approaches may differ

by more than 50 percent (Grigull et al., 2004; Holstege et al.,

1998; Wang et al., 2002). In turn, the accuracy of the decay curve

will influence how precisely it can be modeled. In this work, we

use single-molecule counting with fluorescent in situ hybridiza-

tion (FISH) (Zenklusen et al., 2008) to derive an absolute measure

of mRNA synthesis and decay in individual cells. This provided

a highly sensitive approach for detecting changes that occur in

a fraction of cells and would otherwise have been obscured.

We focused onmRNA turnover because it could regulate gene

expression during the cell cycle. For instance, entry into mitosis

induces a rapid mRNA decay of the mitotic Clb2p cyclin that, if

prevented, can cause failure of cells to finish mitosis (Cai et al.,

2002; Gill et al., 2004). Entry into G0 causes stabilization of

specific G0 mRNAs (Talarek et al., 2010), whereas the stability

of the canonical histone mRNAs increases with the onset of S

phase, and exit from S phase induces their rapid decay (Marzluff

et al., 2008; Osley, 1991). Thus, together with their cyclical tran-

scription, the destabilization of mRNAs can restrict the activity of

periodically expressed genes to a particular cell-cycle phase.

This modulation of stability is typically achieved through binding

of decay regulators to specific sequences located in the mRNA

(reviewed in Guhaniyogi and Brewer, 2001).

We focused on two cell cycle-regulated genes, SWI5 and

CLB2, and measured changes in their mRNA turnover during

the cell cycle. Swi5p is a transcription regulator of late mitosis

genes, and Clb2p is a G2 phase cyclin that drives the progres-

sion of cells towards mitosis. They are coregulated through

shared promoter elements (Koranda et al., 2000; Spellman

et al., 1998; Zhu et al., 2000) and were measured to degrade

with 8 min and 4.5 min half-lives, respectively (Wang et al.,

2002). We used morphological markers to determine timing of

the cell cycle. We counted absolute numbers of cytoplasmic

and nascent transcripts (Zenklusen et al., 2008) and analyzed

decay rates using a mathematical model without the use of tran-

scriptional inhibitors, genetic mutants, or the need to normalize

mRNA signal.
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The use of a single-molecule mRNA decay measurement

enabled identification of a regulatory pathway of mRNA decay

that provides an additional level of cell cycle regulation. We

determined that the half-life of SWI5 and CLB2 decreases

more than 30-fold with the onset of prometaphase/metaphase.

Furthermore, regulation of this mRNA decay is coordinated

with their transcription and controlled by their promoter se-

quence, independent of the specific cis sequences located in

the mRNA. By using morphological markers, we were able to

determine that the cell cycle progression and the prometa-

phase/metaphase stability switch of SWI5 and CLB2 were

coupled and regulated by the mitotic exit network kinases,

Dbf2p and Dbf20p. Both kinases bind to SWI5 and CLB2

mRNAs, and Dbf2p is also enriched at their transcription sites.

We propose a model whereby Dbf2p is first recruited by the pro-

moter and then cotranscriptionally deposited onto the mRNA.

Once in the cytoplasm, the mRNA associates with Dbf20p and

then waits for the appropriate cellular cues to initiate the

decay process. Thus, for a subset of budding yeast mRNAs,

promoter-dependent activity directly influences how and when

an mRNA will be degraded in the cytoplasm.

RESULTS

SWI5 and CLB2 mRNA Exhibit Cell Cycle-Dependent
Decay Kinetics
We measured SWI5 and CLB2 mRNAs decay rates in exponen-

tially growing cells using the common approaches of qRT-PCR

coupled with the transcriptional inhibitor thiolutin. A constitu-

tively expressed ACT1 was expected to decay independently

of the cell-cycle phase with a single decay rate (t1/2 of 45 min)

(Wang et al., 2002) and was used as a control. Decay curves of

SWI5, CLB2, and ACT1 (Figures 1A–1C) were fitted to both an

exponential decay with a single component (green line) and

two components (red line) to identify which kinetic model best

described their decay curves. A two-componentmodel detected

a decay-resistant SWI5 mRNA population (t1/2 > 90 min) and

a rapidly decaying SWI5 mRNA population (t1/2 = 3.0 min),

whereas a single component model with a t1/2 = 6.9 min showed

systematic deviations from the measured data. A two-compo-

nent model was not able to resolve multiple CLB2 decay popu-

lations and, similarly to ACT1 mRNA, fitted the decay data as

well as a single component model. Here, CLB2 mRNA decayed

with a single t1/2 = 3.7 min, whereas ACT1 mRNA decayed with

a single t1/2 = 41.3 min, consistent with previously reported

values (Wang et al., 2002).

To test whether SWI5 and CLB2 mRNAs decayed differently

during the cell cycle, we synchronized cells in different cell-cycle

phases followed by thiolutin inhibition. In S phase and at G2/M

border, SWI5 andCLB2mRNAs were stable, whereas in mitosis,

they decayed rapidly with an estimated t1/2 of �3 min (Figures

1D–1G and Figure S1A available online). ACT1 decayed inde-

pendently of the cell-cycle phase and, similarly to unsynchro-

nized cells, turned over with a single t1/2 of �30 min.

Kinetics of transcription inhibition by thiolutin was indepen-

dent of the synchronization protocol (Figure S1B), and thus we

could conclude that the stability of SWI5 and CLB2 mRNAs,

but not of ACT1 mRNA, changed depending on the cell-cycle
C

phase. Two CLB2 decay populations, however, could only

be detected when physically separated in time by cell culture

synchronization. Therefore, normalization of mRNA decay

signal, inhibition of transcription, and use of populationmeasure-

ments obscured the behavior occurring in a fraction of cells, thus

diminishing the sensitivity of the technique. We employed an

approach that was both highly quantitative and minimally inva-

sive to the cell’s physiology. We modified a FISH-based method

that enabled us to quantify mRNA decay rates in individual, mini-

mally perturbed cells with single mRNA sensitivity without the

need for transcription inhibition, cell synchronization, or normal-

ization of mRNA signal.

Measuring mRNA Decay Using Single-Cell, Single-
Molecule FISH
We counted single transcripts in the cytoplasm in individual cells

using single-cell, single-molecule FISH (Zenklusen et al., 2008).

A mix of fluorescently labeled probes hybridizing along an

mRNA was used (Figure 2A, red probes, and Table S1), which

strongly amplified the signal-to-noise ratio and detection sensi-

tivity. Fluorescent transcripts were detected and counted using

the algorithm Localize (Larson et al., 2005; Zenklusen et al.,

2008; Figure S2A). Specific fluorescent signal was only detected

in the presence of a target mRNA (Figures S2C and S2D). After

cell segmentation, we obtained an absolute number of tran-

scripts per cell, which obviated normalization of mRNA signal

required for ensemble measurements and thus the uncertainty

associated with them.

FISH probes also annealed to the nascent chains whenever

a cell actively transcribed a gene. We used a single probe tar-

geted to the 50-most endof the transcript labeledwith a spectrally

distinct fluorophore (Figures 2A, green probe, and S2B) and

quantified the number of these probes annealed at the site of

transcription (Femino et al., 1998; Zenklusen et al., 2008). This

approach constitutes a direct measure of transcriptional activity

in the cell, and the number of nascent chains reflects both the

transcript initiation rate and the dwell time of a transcript as

determined by all postinitiation processes, including elongation

and termination (see below). By directlymeasuring this transcrip-

tional output, transcription inhibition was no longer needed,

which enabled us to measure kinetics of mRNA decay in chem-

ically unperturbed cells.

To quantify changes inmRNA stability throughmitotic division,

we binned cells into cell-cycle phases using morphological

markers as indicators of cell-cycle time (Brewer et al., 1984;

Hartwell, 1974; Lord and Wheals, 1980; Figure 2B). This

approach provided temporal resolution without the need for

cell synchronization. Four morphological markers were used:

bud size (DIC), movement of the nucleus detected by DAPI, posi-

tioning of the spindle pole body indicated by CFP-tagged

Spc42p, and localization of a GFP-tagged Whi5p. Whi5p is

nuclear during telophase, cytokinesis, and G1 phase of the cell

cycle and is cytoplasmic in all others (Bean et al., 2006), allowing

differentiation between G1 phase and early S phase cells that

have not yet formed a bud. Duplication time of the yeast culture

was 90 ± 8.5 minutes, and the percent of cells in each phase

was directly proportional to its length in minutes. For example,

18.3% of cells were identified as late S phase cells, which
ell 147, 1484–1497, December 23, 2011 ª2011 Elsevier Inc. 1485
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Figure 1. Stability of SWI5 and CLB2 Changes with the Cell-Cycle Phase

(A–C) Thiolutin was added to exponentially growing cells, and relative mRNA levels were measured using qRT-PCR. (Green line) Decay curves fitted to an

exponential decay with a single component; SWI5 t1/2: 6.9 ± 1.0 min (R2 = 0.87); CLB2 t1/2: 3.7 ± 0.5 min (R2 = 0.96); ACT1 t1/2: 41.3 ± 14.5 min (R2 = 0.57).

(Red line) Decay curves fitted to an exponential decay with two components; SWI5 t1/2
1: 3.0 ± 0.9 min and t1/2

2 > 90 min (R2 = 0.98); CLB2 t1/2
1 = t1/2

2: 3.7 min

(R2 = 0.96); ACT1 t1/2
1 = t1/2

2: 41.0 min (R2 = 0.57).

(D and E) Cells were synchronized in S phase with hydroxyurea (HU) and mRNA decay measured after thiolutin was added. For measurements in mitosis, cells

were removed from the cell-cycle block and grown for 1 hr, and then thiolutin was added andmRNAdecaymeasured (Gill et al., 2004). In S phase,SWI5 andCLB2

were decay resistant. ACT1 t1/2: 29.0 ± 8.2 min (R2 = 0.74), and in M phase, SWI5 and CLB2 decayed with t1/2 � 3 min. ACT1 t1/2: 31.5 ± 8.3 min (R2 = 0.67). In all

panels, an average of two experiments with SD is shown.

(F and G) Cells synchronized with HU in S phase (t = 0 min) and mitosis (t = 60 min). Images of DIC, nucleus (DAPI), and a spindle pole body marker (Spc42-CFP)

are shown.

Scale bars, 1 mm. See also Figure S1.
converted to 16.5 min (Figure 2B). Cell binning was highly repro-

ducible among experiments using the same strain, with a variabil-

ity%10%. Thus, one can determine the relative time of progres-

sion through the cell cycle, allowing one to obtain dynamics of

cell-cycle gene expression from a population of fixed cells.

SWI5 and CLB2 mRNA Stability Are Coordinated
with Transcription
As anticipated for coregulated genes, expression of SWI5 and

CLB2 was similar and followed four discernable stages (Figures

3A–3D). The first spanned the entire S phase, when transcription

was infrequent and mRNA accumulation modest. The sec-

ond stage spanned G2 phase and prometaphase/metaphase,
1486 Cell 147, 1484–1497, December 23, 2011 ª2011 Elsevier Inc.
when transcription increased sharply and the bulk of mRNA

synthesis occurred within 6.7 minutes. The onset of the third

phase coincided with the onset of anaphase. Transcription of

both genes ceased, and transcripts were degrading rapidly. In

the last stage during G1 phase, the probability of expression of

either of the genes fell below 5%.

Because transcription became inactive during mitosis, mRNA

decay rates could be determined directly from their cytoplasmic

mRNA profiles (Figures 3C and 3D, blue line). During mitosis,

SWI5 and CLB2 mRNAs decayed with a t1/2 of 2.1 ± 0.8 min

and a t1/2 of 1.8 ± 0.5 min, respectively, based on the fit to the

cellular RNA profiles. This rapid decay prevented carryover of

mRNAs into the new cell cycle (demarcated with gray boxes).
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Figure 2. Measuring mRNA Decay Rates Using Single-Cell, Single-Molecule FISH

(A) (Red) A mix of cy3.5-labeled probes was used to count single cytoplasmic transcripts. (Green) A 50-most cy3-labeled probe was used to count the number of

nascent chains at the transcription site (arrowhead).

(B) Morphological markers used to bin cells into cell cycle phases: G1, early S, late S, G2, prometaphase/metaphase (P/M), anaphase (ANA), and telophase/

cytokinesis (T/C). An average cell-cycle phase length between two experiments ± SD is shown. Minimally, 600 cells per experiment were counted, and the length

of each phase in minutes was calculated.

Scale bars, 1 mm. See also Figure S2.
Decay rates previously observed for SWI5 and CLB2 (Wang

et al., 2002) were inconsistent with the data obtained by FISH;

the slower decay rate would have contaminated the next cycle

(Figures 3C and 3D, green line).

To quantify CLB2 and SWI5 decay rates in the context of

changing transcriptional activity during the cell cycle, we used

mathematical modeling. The number of cytoplasmic mRNAs at
C

any point of the cell cycle depends on the rates of their synthesis

and decay. By measuring the total transcript level and the

synthesis rate, we can determine the decay rate constant

according to the differential equation:

dN

dt
=
m

T
� kN (1)
ell 147, 1484–1497, December 23, 2011 ª2011 Elsevier Inc. 1487
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Figure 3. Decay of SWI5 and CLB2 mRNAs Is Coordinated with Transcription

(A and B) Percentage of cells with a SWI5 or CLB2 transcription site per cell-cycle phase.

(C and D) Determining the mitotic decay constant. (Black lines and circles) Number of cytoplasmic SWI5 and CLB2mRNAs/cell (N) ± SEM determined by FISH.

(Blue curve) Cytoplasmic SWI5 and CLB2mRNA profiles fitted to a single exponential decay model whereby, during mitosis, SWI5 and CLB2 decayed with a t1/2
of 2.1 ± 0.8min (R2 = 0.94) and t1/2 of 1.8 ± 0.5min (R2 = 0.97), respectively. (Green line)SWI5 andCLB2 decay curve from published literature with t1/2 = 8min and

t1/2 = 4.5 min, respectively (Wang et al., 2002). Gray boxes demarcate a new cell cycle.

(E and F) Quantifying the premitotic decay constant using the mathematical model. (Black circles) As in A and B. (Red circles) Number of SWI5 andCLB2 nascent

mRNAs/cell (m) ± SEM determined by FISH. (Black line) Mathematical fit to N. (Red line) Mathematical fit tom. For SWI5 T = 66 ± 7.0 s, a premitotic t1/2 > 90 min

and a mitotic t1/2 = 2.1 min (c2 = 31.5). For CLB2 T = 63 ± 5.5 s, a premitotic phase t1/2 = 66 min, and a mitotic t1/2 = 1.8 min (c2 = 50.0).

In all graphs, x axis delineates duration of each cell-cycle phase (min). M includes P/M, ANA, and T/C. See also Figure S3.
whereN is the number of transcripts in the cytoplasm (Figure 2A);

t is time; m is the transcriptional activity of a gene measured by

the number of nascent transcripts at a transcription site (Fig-
1488 Cell 147, 1484–1497, December 23, 2011 ª2011 Elsevier Inc.
ure 2A); T is the dwell time of a nascent transcript (s); and k is the

degradation rate constant (s-1) (see Experimental Procedures).

The solution to this differential equation is:



NðtÞ= m

kT

�
1� e�kt

�
+N0e

�kt (2)

where N0 is the initial number of transcripts. The time t is deter-

mined from cell-cycle markers as described above (Figure 2B).

The measured values are m and N determined as a function of t,

and the fit parameters are k and T. For each gene, a global

nonlinear least-squarefit to theexpressionprofilewasdetermined.

This model describes RNA levels as a balance of zero-order

RNA synthesis and first-order decay. We assume first-order

mRNA decay because it is the simplest model that describes our

data andallowsus tocompare tobulkbiochemicalmeasurements

of mRNA stability. In the simplest form, with a dwell time and an

mRNA half-life that are invariant over the cell cycle, both fit values

are < 35 s, resulting in RNA polymerase velocities and RNA life-

times that are unphysical (Figures S3A–S3G). However, if we

include the possibility of bimodal decay, as experimentally

observed in Figure 1, the model captures the essential features

of SWI5 and CLB2 regulation over the cell cycle. We kept the

mitotic t1/2 fixed at 2.1 min for SWI5 and t1/2 at 1.8 min for CLB2,

as determined by the FISH measurements (Figures 3C and 3D

and S3C–S3G), and allowed the nascent transcript dwell time

and the premitotic decay to float. This fitting regime reached

a global minimum with the following parameter values: for SWI5

mRNA, a dwell timeof 66± 7.0 s and apremitotic t1/2>90min (Fig-

ure 3E, solid lines) and for CLB2mRNA a dwell time of 63 ± 5.5 s

and a premitotic t1/2 of 66 min (Figure 3F, solid lines). The dwell

times consist of elongation and postelongation processes, and

if the termination time is estimated as 30 s (Zenklusen et al.,

2008), the resulting polymerase velocity is �50 bp/s, consistent

with the polymerase velocity of 46 ± 6.2 bp/s during S/G2/M (Lar-

son et al., 2011). Additionally, the bimodal decay kinetics is

invariant of nascent chain dwell times as long as these remain

within the physiological boundaries of T > 18 seconds (Figures

S3C–S3G). Lastly, based on the best fit of our model, we deter-

mined that the switch inmRNA stability occurred during prometa-

phase/metaphase, when transcription for both genes was at its

peak, even though the rapid decay became apparent only with

the onset of anaphase, when transcription was shutting down

(Figures 3A–3F).

To further address the timing of destabilization, we modeled

the data assuming that the switch in mRNA stability occurred

with the onset of anaphase. This fitting regime also resulted in

bimodal decay kinetics similar to the one described above but

with the higher divergence of the mathematical fit from the

FISH data (data not shown). Based on the best fit criterion, this

anaphase-specific model was thus not considered in the anal-

ysis of SWI5 and CLB2 decay kinetics.

Several important conclusions are evident: (1) prior to mitosis,

SWI5 and CLB2 transcripts were stable, allowing the cell to

increase mRNA levels during active transcription; (2) during

mitosis, when SWI5 and CLB2 transcription were shutting down,

their transcripts decayed rapidly, preventing carryover into the

next cell cycle; (3) the switch from one state to the other occurred

during prometaphase/metaphase (P/M), when SWI5 and CLB2

transcription reached its peak. These data suggest, therefore,

that mRNA synthesis and decay were temporally coordinated for

SWI5 and CLB2.
C

The Promoter Regulates SWI5 mRNA Stability
We sought to characterize the mechanisms that control the

cell cycle-dependent decay. Several regulatory elements

could control degradation of an mRNA: its 50 and 30UTRs,
its ORF, or its promoter. We thus replaced the SWI5 50 and
30UTRs and the promoter sequence with the corresponding

regions of constitutively expressed ACT1 and DOA1 genes. We

constructed cloning cassettes that allowed the integration of

the constructs into the native SWI5 locus with a concurrent dele-

tion ofWTSWI5 copy (Figure 4A and Table S3). In wild-type cells,

ACT1 mRNA demonstrated a single decay rate of 41.5 min

(Figures 1C–1E) andaccumulated transcripts throughoutmitosis,

unlike SWI5 (Figure 4B). WT DOA1 mRNA decayed with a t1/2 of

11.0 min and, similarly to ACT1, accumulated transcripts

throughout mitosis (Figures 4C, S3G, and S4A).

We tested the influence of SWI5 50 and 30UTRs on the stability

of SWI5 mRNA by replacing them with the 50 and 30UTRs of the

ACT1 gene (Figures 4D and S4B). If binding of decay regulators

to sequences in 50 or 30UTR alone regulated SWI5 mRNA turn-

over, then this replacement should abolish cell cycle-dependent

mRNA decay and cause continuous accumulation of transcripts

similar to WT ACT1 mRNA. However, this replacement had no

effect on either the stability of the chimeric SWI5 mRNA or the

prometaphase/metaphase-specific switch in mRNA stability.

As in WT cells, chimeric SWI5mRNAs were decay resistant prior

to mitosis (t1/2 > 90 min) and decay sensitive during mitosis

(t1/2 =2.4 ± 1.3 min).

We then replaced only the SWI5 promoter with that of ACT1

while keeping the rest of the SWI5 mRNA intact (Figures 4E and

S4C). In this strain, SWI5 transcripts showed expression profiles

similar to ACT1, with a single half-life of 19.7 min and continuous

accumulation of transcripts throughout mitosis. Furthermore,

when in addition to the SWI5 promoter we also changed its 50

and 30UTR for that of ACT1 gene (Figure S4D), SWI5 transcripts

decayed with a single decay rate of 18.7 min throughout the cell

cycle.

In the reciprocal experiment, rapid decay duringmitosis would

bring ACT1 mRNA below the critical amount needed for the cell

to survive. Therefore, we used the nonessential DOA1 gene,

which decays similarly to ACT1 (Figures 4C and S4A) and ex-

pressed it using a SWI5 promoter (Figures 4F and S4E). Under

SWI5 promoter control, cell cycle-dependent transcription and

decay of SWI5 mRNA were recapitulated on DOA1 mRNA.

DOA1 mRNAs were stable prior to mitosis, with a t1/2 > 90 min,

and decayed rapidly, with a t1/2 of 4.9 ± 0.7 min during mitosis.

Therefore, changes in the mRNA stability through the cell cycle

were regulated entirely by SWI5 promoter andwere independent

of the specific cis mRNA sequences.

The Promoter Also Regulates CLB2 mRNA Stability
The same transcription factors that regulate SWI5 expression

also regulate CLB2 expression (Darieva et al., 2006; Koranda

et al., 2000; Spellman et al., 1998; Zhu et al., 2000), and thus it

was likely that, as with SWI5, the cell cycle-dependent decay

of CLB2 was also controlled by its promoter. We thus replaced

the promoter of CLB2 for that of ACT1 while keeping the rest

of the CLB2 mRNA intact. When expressed from the ACT1

promoter, CLB2 transcripts turned over with a single mRNA
ell 147, 1484–1497, December 23, 2011 ª2011 Elsevier Inc. 1489
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Figure 4. SWI5 mRNA Decay Is Determined by Its Promoter

(A) Design of an integration cassette. Colors denote gene origins: SWI5, yellow; ACT1, blue; DOA1, pale blue; selection marker, green.
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Figure 5. CLB2 mRNA Decay Is Determined by Its Promoter

(A and B) An integration cassette used to create the strain is shown. Colors denote gene origins: ACT1, blue; DOA1, pale blue; CLB2, violet; selection marker,

green. (Black circles) Number of cytoplasmicCLB2 orDOA1mRNAs/cell (N) ± SEM determined by FISH; (red circles) Number ofCLB2 orDOA1 nascent mRNAs/

cell (m) ± SEM determined by FISH; (black line) mathematical fit to N; (red line) mathematical fit to m.

(A) CLB2 mRNA expressed from the ACT1 promoter: T = 66 s and a t1/2 of 4.9 min (c2 = 32.4).

(B) DOA1mRNA expressed from the CLB2 promoter: T = 77 s, a pretelophase/cytokinesis t1/2 of 14.7 min, and a telophase/cytokinesis t1/2 of 0.9 min (c2 = 32.5).

In all graphs, the x axis delineates duration of each cell-cycle phase (min). M includes three cell-cycle phases: P/M, ANA, and T/C. Images of cells through the cell

cycle are shown. Scale bars, 1 mm.
half-life of 4.9 min and, unlike WT CLB2 mRNAs, accumulated

continuously throughout mitosis (Figure 5A).

In the reciprocal experiment, a constitutively transcribed

DOA1 was expressed from the CLB2 promoter and its mRNA

stability measured. In this strain, the gene expression features
(B) WT ACT1 expression over the cell cycle. Note the increase in transcription a

shown with images of ACT1-expressing cells (see Experimental Procedures).

(C) WT DOA1. (Black circles) N ± SEM; (red circles) m ± SEM quantified by FISH

t1/2 = 11.0 min (c2 = 46.7).

(D–F) Swapping of SWI5 regulatory sequence elements with ACT1 and DOA1 s

(red circles) m ± SEM quantified by FISH; (black line) mathematical fit to N; (red

(D) Chimeric SWI5 with ACT1 50 and 30UTR. T of 64 s, a premitotic t1/2 > 90 min

(E) SWI5 with ACT1 promoter: T of 72 s and a t1/2 = 19.7 min (c2 = 162.1).

(F)DOA1withDOA1 50 and 30UTRs expressed from a SWI5 promoter. T of 68 s, a p

For (B)–(F), see Experimental Procedures and Table S3. In all graphs, the x axis de

Images of cells through the cell cycle for each strain are shown. Scale bars, 1 mm

C

of CLB2 were recapitulated on DOA1, with a slow mRNA turn-

over prior to mitosis (t1/2 of 14.7 min) and a rapid turnover during

mitosis (t1/2 of 0.9 min) (Figure 5B). Unlike WT CLB2, however,

the switch in the DOA1 mRNA stability occurred during telo-

phase/cytokinesis. Due to the integration of cloning cassette
nd transcripts after gene duplication. Summed fluorescence intensity ± SD is

; (black line) mathematical fit to N; (red line) mathematical fit to m. T of 68 s,

hows that the promoter is the determinant of decay. (Black circles) N ± SEM;

line) mathematical fit to m.

(c2 = 25.7), and a mitotic t1/2 = 2.4 ± 1.3 min (R2 = 0.92).

remitotic t1/2 > 90min (c2 = 109.9), and amitotic t1/2 = 4.9 ± 0.7 min (R2 = 0.99).

lineates duration of each cell-cycle phase (min). M includes P/M, ANA, and T/C.

. See also Figure S4.
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Figure 6. Dbf2p, but Not Dbf20p, Associates with SWI5 and CLB2 mRNA during Transcription and Regulates Their mRNA Stability

(A) RNA immunoprecipitation of SWI5 andCLB2mRNAs with Dbf2p-TAP and Dbf20p-TAP frommitotic cells. Binding relative to Pab1p-TAP is shown. Significant

enrichment relative to untagged cells is indicated (t test; *p<0.05 and **p<0.01).

(B) The positions of PCR amplicons used in (A)–(E) for each gene are depicted (Table S5).

(C–E) Dbf2p-TAP, Dbf20p-TAP, and an untagged control were immunopurified from S phase (S, black bars) or mitotic cells (M, red bars). Association of these

proteins to various regions of SWI5, CLB2, ACT1, and DOA1 genes was analyzed by qPCR. Data are represented as relative to binding to TEL V, a telomeric

region in chromosome V. In each panel, an average of three experiments with the SEM is shown. Significant enrichment relative to the S phase cells is indicated

(t test; * p<0.05).

(F–I) Dbf2p and Dbf20p deletions affect SWI5 andCLB2mRNA stability. (Black circles)N ± SEM; (red circles) m ± SEM; (black line) mathematical fit toN; (red line)

mathematical fit to m.

(F) SWI5 in DDBF2: T of 66 s, premitotic t1/2 = 4.3 min, and a mitotic t1/2 = 2.8 min (c2 = 6.3).
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into the CLB2 locus, this strain did not express the Clb2

cyclin. Consistent with the literature, this deletion resulted in an

abnormal cell cycle and a delayed progression through mitosis

(Figure 5B; Fitch et al., 1992), which could have adverse effects

on the decay process and the timing of theDOA1mRNA stability

switch.

These results demonstrate that the promoter sequence regu-

lates the cell cycle-dependent mRNA turnover of both the SWI5

and CLB2, independent of their cis mRNA sequences. mRNA

stabilities measured for SWI5 and CLB2 when driven from the

ACT1 promoter thus represent their ‘‘innate’’ abilities to resist

decay. For SWI5 and CLB2, therefore, transcription and mRNA

decay are codependent processes in which the regulation of

the first influences the outcome of the latter.

mRNA Stability of SWI5 and CLB2 Is Regulated by Dbf2p
and Dbf20p
A bona fide regulator of SWI5 and CLB2 decay requires interac-

tion with their transcription factors, the mRNA decay regulators,

and the cell-cycle machinery to ensure coordination among the

three. In the search of this trans-acting factor, we made use of

the Saccharomyces genome database. Because the regulation

of SWI5 and CLB2 decay is promoter dependent, we asked

whether any of their transcription factors physically interacted

with a protein that, in turn, interacted with themRNA decay regu-

lators and the cell-cycle regulators to provide coupling among

the three processes (see Experimental Procedures). Dbf2p, a

mitotic exit network (MEN) kinase, was the only protein that

satisfied this criterion. It interacts with Cdc5p (Visintin and

Amon, 2001), a SWI5 and CLB2 transcription factor and itself

a MEN regulator (Darieva et al., 2006); it is a part of a larger

CCR4-NOT complex (Liu et al., 1997), a major deadenylase of

cytoplasmic mRNAs in yeast (Tucker et al., 2001); and Dbf2p is

mitotically active to ensure telophase to G1 phase transition

(Toyn and Johnston, 1994). Similarly, Dbf20p performs several

Dbf2p functions and is synthetically lethal with Dbf2p (Toyn

et al., 1991), so we assayed its role in regulation of SWI5 and

CLB2 mRNA decay as well.

By using an RNA immunoprecipitation assay and mitosis-

synchronized cells to enrich for the SWI5 and CLB2 expression,

we detected specific and significant binding of TAP-tagged

Dbf2p to SWI5 and CLB2 mRNAs at levels similar to Pab1p-

TAP, but not to ACT1 and DOA1 mRNAs (Figures 6A and 6B).

Significant Dbf20p-TAP binding was detected only with CLB2

mRNA. Furthermore, by using chromatin immunoprecipitation

(ChIP), we detected significant enrichment of Dbf2p-TAP at

SWI5 and CLB2 transcriptional units, which was also RNA

dependent (Figures 6B, 6C, 6E, and S5A). Dbf2p-TAP binding

was only detected in cells enriched in mitosis (red bars) and

not in S phase (black bars). This result was anticipated because,

in S phase, transcription of SWI5 and CLB2 was infrequent

(Figures 3E and 3F, red line), and thus the ChIP enrichment

was not expected. Accordingly, the RNAPII ChIP in S phase cells
(G) SWI5 in DDBF20: T of 66 s, premitotic t1/2 = 7.1 min, and a mitotic t1/2 = 2.6

(H) CLB2 in DDBF2: T of 63 s, premitotic t1/2 = 4.4 min, and mitotic t1/2 = 3.4 min

(I) CLB2 in DDBF20: T of 63 s, premitotic t1/2 =7.8 min, and a mitotic t1/2 = 2.2 m

In all graphs, the x axis delineates duration of each cell-cycle phase (min). M inc

C

was only marginally higher relative to background, particularly

for SWI5 (Figure S5B). Cotranscriptional binding of Dbf20p-

TAP to SWI5 and CLB2 mRNAs could not be detected (Figures

6B, 6D, and 6E), indicating that Dbf20p interacts with CLB2 after

transcription is completed, possibly in the cytoplasm.

Finally, we measured SWI5 and CLB2 mRNA stabilities in the

absence of Dbf2p and Dbf20p. Protein levels of either kinases

do not fluctuate through the cell cycle (data not shown) (Visintin

and Amon, 2001), and hence we speculated that Dbf2p or

Dbf20p could regulate either stable or unstable SWI5 and

CLB2 mRNAs. Deletion of either of the kinases had no effect

on the stability of ACT1mRNA (Figures S5C and S5D) but greatly

affected the stability ofSWI5 andCLB2mRNAs, particularly prior

to mitosis (Figures 6F–6I). Moreover, the regulation of mRNA

stability by Dbf2p was independent of its kinase activity (Figures

S5E and S5F). The mRNA half-lives determined for these two

mRNAs using thiolutin and qRT-PCR were kinetically inconsis-

tent with the FISH measurements (Figures S5G–S5L). These

discrepancies are likely to have occurred due to toxic effects

that thiolutin exerts on the physiology of a cell and on the

mRNA turnover (Jimenez et al., 1973; Pelechano and Pérez-

Ortı́n, 2008), thus artificially prolonging their mRNA stabilities.

Additionally, both deletions prolonged the G2 to T/C length

of the cell cycle relative to the WT by 2- to 4-fold (Figures

S6A–S6D), consistent with the literature (Liu et al., 1997). Thus,

cells spent a longer time expressing SWI5 and CLB2 with tran-

scriptional amplitudes similar to the WT cells but without exces-

sive accumulation of transcripts (red circles in Figures 6F–6I, 3E,

and 3F). The measured reduced stabilities of SWI5 and CLB2 in

DDBF2 and DDBF20 could not have been an artificial conse-

quence of the redistribution of the transcripts over a longer cell

cycle because the model accounted for the ongoing transcrip-

tion. Thus, due to decreased stability of SWI5 and CLB2, cells

were estimated to synthesize up to three times more mRNAs

to reach the WT levels (Figures S6E–S6H).

These results imply that Dbf2p is recruited to SWI5 and CLB2

promoters and loaded onto SWI5 and CLB2 nascent chains

cotranscriptionally. Dbf2p is then exported with the mRNAs

into the cytoplasm, where along with Dbf20p, it regulates the

timing of SWI5 and CLB2 decay (Figure 7). Dbf2p and Dbf20p

thus coordinate between SWI5 and CLB2 transcription and

mRNA decay and communicate the cell-cycle cues onto the

decay machinery to initiate the decay process.

DISCUSSION

Single-Cell, Single-Molecule mRNA Decay
Measurements
In this work, we developed a single-cell, single-molecule

approach that enabled us to characterize the kinetics of mRNA

decay with a high temporal resolution. This approach uncovered

a unique promoter-dependent regulatory mechanism of mRNA

decay that could be employed by a variety of cell cycle-regulated
min (c2 = 18.9).

(c2 = 115.7).

in (c2 = 40.3).

ludes P/M, ANA, and T/C. See also Figures S5and S6 .
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Figure 7. Model Proposing the Life Path of SWI5 and CLB2 mRNAs

Dbf2p is recruited to the SWI5 and CLB2 promoters and is cotranscriptionally deposited onto SWI5 and CLB2mRNAs. Once exported into the cytoplasm, SWI5

and CLB2 mRNA stability is additionally maintained by Dbf20p. During mitosis, Dbf2p is dephosphorylated (Toyn and Johnston, 1994), which could be a cell-

cycle progression signal to initiate decay possibly through regulation of the CCR4-NOT complex and deadenylation of the transcripts.
genes. We further identified two regulators of mRNA decay,

Dbf2p and Dbf20p, each with distinct functions in regulating

SWI5 andCLB2 stability. A particular advantage of our approach

was that, unlike traditional techniques used to quantify mRNA

turnover, we were able to measure transcription and decay con-

currently. This enabled us to determine that SWI5 and CLB2

transcription and decay were temporally coordinated through

the cell cycle. Furthermore, deletion of Dbf2p and Dbf20p

resulted in destabilization of SWI5 and CLB2 mRNAs and also

reduced the efficiency of coordination between transcription

and decay. Thus, cells spent a longer time transcribing SWI5

and CLB2 without excessive accumulation of mRNAs. To com-

pensate for the increased decay, cells were estimated to synthe-

size up to three times more mRNAs to reach the WT levels. Our

measurements reveal, therefore, that balancing infrequent tran-

scription with mRNA stability is necessary for effective transcript

build-up, and transcription shutdown during mitosis and rapid

decay prevent carryover of mRNAs into the next cell cycle.

Promoter Regulation of mRNA Decay and Mitotic
Division
Achieving specificity of mRNA decay through a promoter

sequence and not a specific cis mRNA sequence, as shown
1494 Cell 147, 1484–1497, December 23, 2011 ª2011 Elsevier Inc.
for SWI5 and CLB2, is a unique attribute. In order to maintain

coordination between transcription and cytoplasmic decay,

only the promoter sequence needs to be conserved, whereas

the mRNA sequence can vary independently without disrupting

regulation of either process. If multiple genes share promoter

sequences, the entire expression process can be coordinated

as a group. For example, SWI5 and CLB2 share promoter

sequences with 33 other genes in the CLB2 cluster involved in

the G2/M transition (Koranda et al., 2000; Spellman et al.,

1998; Zhu et al., 2000) and may be similarly regulated. Several

of these genes are toxic when overexpressed (Niu et al., 2008;

Sopko et al., 2006), indicating that timing of their expression

during the cell cycle is restricted. Such coordination would

ensure that all mRNAs in a group would oscillate as one entity,

ensuring sharp transitions between cell-cycle phases. It is pos-

sible that the promoter-dependent coordination between tran-

scription and mRNA decay could be employed by cell-cycle

cluster genes other than the CLB2 (there are eight in budding

yeast; Spellman et al. [1998]). Interestingly, several transcripts

in budding yeast couple the regulation of their stability with the

transcriptional activity of RNAPII through polymerase-interacting

subunits Rbp4/7 (Goler-Baron et al., 2008). This coupling

phenomenon is employed by �10% of the genes in



Saccharomyces cerevisiae and was shown to be preserved

through evolution (Dori-Bachash et al., 2011). Thus, intriguingly,

promoter-dependent regulation of mRNA stability could be

a common strategy of control of mRNAs turnover in yeast and

possibly in a variety of eukaryotic cells.

SWI5 and CLB2 mRNA Life Cycle
We propose a model whereby the regulation of cytoplasmic

SWI5 andCLB2mRNAdecay begins concurrentlywith their tran-

scription (Figure 7). To provide specificity of decay, independent

of specific cis mRNAs sequences, the decay regulator must be

recruited by SWI5 and CLB2 transcription factors to their

promoters and deposited onto the mRNA during transcription.

Possibly, the promoter recruits factors that influence a specific

mRNA feature, such as the cap structure, the poly(A) tail, or their

associated proteins. We identified Dbf2p kinase as a regulator of

SWI5 andCLB2 decay and found it associated with their mRNAs

during transcription.SWI5andCLB2areadditionally stabilizedby

Dbf20p. Unlike Dbf2p, Dbf20p does not bind to SWI5 and CLB2

cotranscriptionally and likely associates with mRNAs in the cyto-

plasm.Our data indicate therefore that, despite being redundant,

Dbf2p and Dbf20p have distinct functions in regulation of SWI5

and CLB2mRNA stability, indicating that their roles in the decay

process are complex and could involve multiple regulators.

How Dbf2p becomes recruited to the promoters of SWI5 and

CLB2 and how the two kinases interact with the mRNAs is not

clear. Interaction of Dbf2p with Cdc5p (Visintin and Amon,

2001), a SWI5 and CLB2 transcription factor (Darieva et al.,

2006), suggests a possible mechanism. Additionally, the mech-

anism whereby Dbf2p and Dbf20p regulate mRNA stability is

also unknown. This regulation is independent of Dbf2p (and

presumably Dbf20p) kinase activity, which is triggered shortly

after metaphase-to-anaphase transition to promote progression

from telophase to G1 phase (Toyn and Johnston, 1994). These

results are consistent with our findings that Dbf2p and Dbf20p

stabilize SWI5 and CLB2 mRNAs prior to mitosis when their

kinase activity is low (Toyn and Johnston, 1994). Because the

prometaphase/metaphase and anaphase are separated only

by a couple of minutes, it is possible that insufficient time reso-

lution duringmitosis obscured precisely when themRNA stability

switch occurs. Nevertheless, our data indicate that Dbf2p and

Dbf20p have two biologically distinct and mutually independent

functions: one involved in regulation of mRNA stability described

here and a better understood one involved in the regulation of

completion of mitosis as MEN regulators (Mah et al., 2001).

Additionally, how Dbf2p and Dbf20p relay cell-cycle signals

onto the mRNA decay machinery to initiate decay remains to

be determined. Dbf2p is dephosphorylated during mitosis

(Toyn and Johnston, 1994), and we speculate that this dephos-

phorylation event could act as a cell-cycle signal, thereby

synchronizing mRNA degradation and mitotic division. Intrigu-

ingly, association of Dbf2p with the CCR4-NOT complex

suggests that regulation of decay could be manifested through

the regulation of deadenylation, as determined for tristetraprolin

protein TTP. Dephosphorylation of TTP controls if and when

CCR4-NOT complex is able to gain access to the mRNA to

initiate decay (Clement et al., 2011; Sandler et al., 2011). Similarly

to TTP, Dbf2p and Dbf20p might regulate accessibility of CCR4-
C

NOT complex to the SWI5 and CLB2mRNAs in a dephosphory-

lation-dependent but kinase activity-independent manner.

Here, we show that the fate of the SWI5 and CLB2 mRNA is

determined cotranscriptionally at their birth. Thus, the decay

marker assembles on the mRNA and is exported with it into

the cytoplasm, priming the mRNAs for immediate decay once

a cell-cycle signal arrives. Furthermore, in budding yeast, tran-

scriptional activity can directly determine how an mRNA will

localize, translate, and degrade in the cytoplasm (Harel-Sharvit

et al., 2010; Shen et al., 2010). Thus, we hypothesize that a

subset of yeast mRNAs could become ‘‘fully functionally config-

ured’’ during their synthesis. These mRNAs could exit the

nucleus equipped with the regulatory proteins that would define

their translation, localization, and decay, which would then be

‘‘shed away’’ from an mRNA in a step-by-step manner after

each completed step (Trcek and Singer, 2010). This model of

mRNP formation is quite different from the one generally

assumed for an mRNA, wherein proteins that regulate different

steps in anmRNA life path interact with anmRNA only when their

function is needed (Balagopal and Parker, 2009). Our study may

thus have far-reaching implications that will serve as a platform

for the analysis of mRNA decay and proteins that regulate it in

a variety of mRNAs and organisms.

EXPERIMENTAL PROCEDURES

Yeast Strains

Table S3 and the Extended Experimental Procedures list yeast strains used

and their synchronization and growth conditions.

FISH Probes and Procedure

Per gene, three to seven probes were used, each labeled with > 90% labeling

efficiency (Table S1). Design, synthesis, and labeling of probes were per-

formed as described previously (Femino et al., 2003; Zenklusen et al., 2008).

ACT1mRNA was highly expressed, and therefore reliable counting of single

transcripts in a maximal projection as performed for SWI5 and CLB2 was not

possible. Instead, images were sum projected, and total fluorescent intensity

of ACT1 FISH signal for each cell was measured and presented as an average.

The summed fluorescent valueswere corrected for the autofluorescent cellular

background of the same cellular size from the control cells not hybridized with

ACT1 probes. The control cells were subjected to the same hybridization

procedure and imaged as ACT1 FISH cells only without the ACT1 probes.

Mathematical Model

The number of transcriptsmeasured in a particular phase of the cell cycle is the

time-integrated average of the time-dependent solution (Equation 2) divided

by the length of that particular cell-cycle phase:

hNi=
�

1

kTc

���
m

kT
� N0

��
e�kT � 1

�
+

�
mTc

T

��
(3)

where brackets denote the ensemble average over the population of cells in

a particular cell-cycle phase; Tc is the duration of that phase; and m, T, and

k are defined previously (Equation 2) as the number of nascent chains, the

dwell time, and the decay rate, respectively. The initial number of transcripts

N0 is determined by the number of transcripts present at the end of the

previous cell cycle stage:

N0i =NðTci�1;mi�1; ki�1;TÞ (4)

where i designates the cell-cycle phase. Thus, the initial number of transcripts

N0i is determined from the time-dependent solution N(t) (Equation 2) at a time
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Tc corresponding to the length of the previous cell-cycle phase, where the

kinetic values mi-1, ki-l, are also those of the previous cell-cycle phase. The

dwell time (T) of a nascent chain at the gene is determined by the parameters v

(RNAPII velocity) and l (transcript length) (see Tables S3 and S4). Equations 3

and 4 were used to model the data in Figures 3–6 and their supplemental data.

Table S4 summarizes the parameters used to model the FISH data. For WT

SWI5, CLB2, SWI5 with ACT1 50 and 30UTRs, and DOA1 expressed from the

SWI5 promoter, the mitotic decay was measured by fitting their cytoplasmic

mRNA abundances after anaphase onset to an exponential decay with a single

component. A slow decay was determined by calculating a global nonlinear

least-square fit to theN andmwith two floating parameters (T and a premitotic

decay rate), and the mitotic decay (from P/M to T/C) rate measured by FISH

was fixed.

For WT DOA1, SWI5 expressed from the ACT1 promoter, SWI5 with ACT1

50 and 30UTRs expressed from the ACT1 promoter, and CLB2 expressed

from the ACT1 promoter, the data with one free parameter (a single k) were

modeled. The velocity v of the RNAPII of 33 bp/s was assumed (Mason and

Struhl, 2005) to obtain the dwell time T of 68 s (WT DOA1), 72 s (SWI5 with

an ACT1 promoter), 70 s (SWI5 with ACT1 50 and 30UTRs expressed from

the ACT1 promoter), and 66 s (CLB2 with an ACT1 promoter).

For DDbf2 and DDbf20 deletions, for DOA1 mRNA expressed from a CLB2

promoter, and for the Dbf2p kinase dead experiment, the mitotic decay could

not be determined directly from their cytoplasmic mRNA profiles because, in

these strains, the mitotic phases were extended two to three times relative to

WT, and the addition of newmRNAsdue to ongoing transcriptionwas not negli-

gible. Here, the data were modeled with the fixed T of 66 s for SWI5, 63 s for

CLB2, and 77 s forDOA1 determined for theWT SWI5 andCLB2, respectively,

whereas the premitotic and mitotic decay rates were free parameters.

Identification of Dbf2p and Dbf20p as SWI5 and CLB2 Decay

Regulators

A bona fide regulator of SWI5 and CLB2 decay requires interaction with

their transcription factors, the mRNA decay regulators, and the cell-cycle

machinery to ensure coordination among the three. Cell cycle-dependent tran-

scription of SWI5 and CLB2 is regulated by four transcription factors (Ndd1p,

Fkh2p, Mcm1p, and Cdc5p), and their promoter binding positions have been

determined (Darieva et al., 2006; Koranda et al., 2000; Spellman et al., 1998;

Zhu et al., 2000). We reasoned that, because the stability of SWI5 and CLB2

is promoter specified, the mRNA decay regulator that we were searching for

has to be recruited to SWI5 and CLB2 promoters by one of their transcription

factors to ensure specificity of decay. This regulator, in turn, has to interact or

be a part of the mRNA decay machinery and the cell-cycle progression

machinery to further enable the coordination of decay through mitotic division.

In the search of this trans-acting factor, we made use of the Saccharomyces

genome database. Ndd1p, Fkh2p, Mcm1p, and Cdc5p each uniquely inter-

acted with 5, 14, 20, and 97 proteins, respectively. Dbf2p, a mitotic exit

network (MEN) kinase, was the only protein that satisfied our criterion; it inter-

acts with Cdc5p (Visintin and Amon, 2001), a SWI5 and CLB2 transcription

factor and itself a MEN regulator (Darieva et al., 2006). It is furthermore

a part of a larger 1.9 MDa CCR4-NOT complex (Liu et al., 1997), a major dead-

enylase of cytoplasmicmRNAs in yeast (Tucker et al., 2001), and it ismitotically

active to ensure telophase-to-G1 phase transition (Toyn and Johnston, 1994).

Dbf2p interacts with four out of nine proteins of the CCR4-NOT complex:

with Ccr4p, the catalytic subunit of CCR4-NOT complex with deadenylase

activity (Tucker et al., 2002); with Pop2p, Caf40p, and Caf36p, noncatalytic

subunits of CCR4-NOT complex; and also with Caf4p, a CCR4-NOT-associ-

ated protein; and with Cdc33p and Cdc20p, a 50 cap-binding protein and

a cap-associated protein. Dbf2p copurifies with all components of the

complex itself and coimmunoprecipitates with the Ccr4p and Pop2p proteins

(Liu et al., 1997). Additionally, DDBF2 results in similar phenotypes and tran-

scriptional defects to those observed in DCCR4 and DPOP2. Conversely,

DCCR4 and DPOP2 affected mitotic cell-cycle progression similar to that

observed for DDBF2, indicating that Ccr4p, Pop2p, and Dbf2p all participate

in regulating gene expression and cell-cycle progression during late mitosis

(Liu et al., 1997).

Dbf2p is synthetically lethal with Dbf20p, which is not known to interact with

the CCR4-NOT complex or Cdc5p like Dbf2p. During the cell cycle, however,
1496 Cell 147, 1484–1497, December 23, 2011 ª2011 Elsevier Inc.
Dbf20p performs several Dbf2p functions (Toyn et al., 1991), so we assayed

the role of Dbf20p in regulation of SWI5 and CLB2 mRNA decay as well.

Apart from Dbf2p, SWI5 and CLB2 transcription factors displayed other

interactions—but either with the major mRNA decay regulators or cell-cycle

progression regulators and not both, thus making them unsuitable candidates.

For example,Mcm1p interactedwithArg81p, andCdc5p interactedwithCse4p

that, in turn, interacted with Dcp2p, a catalytic subunit of the Dcp1p-Dcp2p

decapping enzyme complex. Cdc5p also interacted with Mcd1p that, in turn,

interacted with Not5p, a subunit of the CCR4-NOT complex and with Nop13p

andPds5p that, in turn, interactedwithXrn1p,a5’-3’exonucleaseandacompo-

nent of cytoplasmic processing (P) bodies involved in mRNA decay.

Finally, apart from its role as a transcription factor, Cdc5p ismostly known as

a MEN regulator in promoting transition of cells from telophase into G1 phase

(Toyn and Johnston, 1994). It physically interacts with several MEN regulators,

for example, with Dbf2p. Unlike Dbf2p however, none of these regulators, in

turn, interact with the mRNA decay factors, making these proteins unsuitable

candidates involved in the regulation of SWI5 and CLB2 mRNA stability.

Unless cited, the protein descriptions were obtained from the Saccharo-

myces genome database.

Chromatin Immunoprecipitation and RNA Immunoprecipitation

45 ml of cells were grown in YPD until OD600 �0.35. Cells were synchronized

in S or M phase with HU (see Extended Experimental Procedures). Chromatin

immunoprecipitation (ChIP) was performed as described in Moldón et al.

(2008) and Table S5. For RNase ChIP in mitotic cells, crosslinked extracts

were treated with DNase-free RNase (50 mg/ml, Roche) for 15min at 37�C prior

to sonication. RNA immunoprecipitation was performed as described in

Gilbert et al. (2004).

Measuring mRNA Decay Rates Using qRT-PCR and Thiolutin

See Table S6 and the accompanying text.
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