
Special Issue – Imaging Cell Biology

A single molecule view of gene
expression
Daniel R. Larson, Robert H. Singer and Daniel Zenklusen

Department of Anatomy and Structural Biology and The Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine,

1300 Morris Park Avenue, Bronx, New York 10461, USA

Review
Analyzing the expression of single genes in single cells
appears minimalistic in comparison to gene expression
studies based on more global approaches. However,
stimulated by advances in imaging technologies,
single-cell studies have become an essential tool in un-
derstanding the rules that govern gene expression. This
quantitative view of single-cell gene expression is based
on counting mRNAs in single cells, monitoring transcrip-
tion in real time, and visualizing single proteins. Parallel
advances in mathematical models based on stochastic,
discrete descriptions of biochemical processes have pro-
vided crucial insights into the underlying cellular mech-
anisms that control expression. The view that has
emerged is rooted in a probabilistic understanding of
cellular processes that quantitatively explains both the
mean and the variation observed in gene-expression
patterns among single cells. Thus, the close coupling
between imaging and mathematical theory has estab-
lished single-cell analysis as an essential branch of sys-
tems biology.

Introduction
Gene expression refers to the sum of processes that result
in a particular level of a specified mRNA and protein in the
cell. In many cell biological studies, gene expression is the
starting point for elucidation of mechanism at the micro-
scopic and molecular levels, while the gene expression
profile is a ‘parts list’ compiled at the macroscopic level.
Describing the coordination of gene expression is therefore
a central step towards understanding cellular systems.
Classical gene expression studies use the isolation of
mRNAs or proteins from cell populations to determine
expression profiles. These methods, however, lack spatial
resolution, are not able to detect cell-to-cell differences
within a population, and can only represent a static pic-
ture. To understand biological processes fully more direct
methods have to be applied, ideally giving the researcher
the ability to monitor individual molecules within single
cells in real time.

In recent years it has become possible to analyze gene
expression at the single-cell and single-molecule levels
[1,2]. Such studies reveal that the expression of individual
genes is highly variable, even within a clonal population of
cells, and understanding the mechanisms that cause these
differences has thus become an area of active research. The
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quantitative accounting of mRNA and protein expression
has been made possible by a rich interaction between
biologists, physicists, and mathematicians as ever more
precise measurements capable of counting single mol-
ecules have advanced in concert with mathematical
descriptions of gene expression. The view of gene expres-
sion that has emerged from these studies is one in which a
small number ofmolecules of bothmRNAand protein leads
to randomness and variation within populations which can
have direct phenotypic consequences [3,4].

In this review we focus on recent experimental devel-
opments and microscopy techniques now being used to
understand the rules that govern gene expression. In
particular we focus on methods that aim to count the total
number of molecules – either mRNA or protein – in a single
cell. We also summarize the theoretical approaches used to
describe this experimental data and show how stochastic
models are able to quantitatively describe gene expression
at the single-cell level. Thesemathematicalmodels provide
a framework for understanding how the relative balance
between the kinetic steps in expression (rates of transcrip-
tion, RNA decay, translation, protein decay) contributes to
the differential regulation of RNA and protein in the cell.
The remarkable developments in this field – both exper-
imental and theoretical – have led to a quantitative
description of gene expression in a context that can be
readily utilized by cell biologists.

Quantifying protein levels in single cells

Following the development of GFP as a tool in cell biology,
the imaging of reporter protein fluorescence quickly became
the most quantitative experimental method for measuring
gene expression in single cells. Even though protein
accumulation is the final step in gene expression, quantifi-
cation of the abundance and variation in protein levels has
beenused to infer themechanisms of gene expression acting
at the level of individual genes and mRNA [1,2].

The first effort to obtain absolute protein numbers on a
genomic scale however did not use single-cell methods but
was rather an ensemble measurement. Ghaemmaghami
and colleagues determined global protein abundance in S.
cerevisae using a library of strains tagged with protein A
and quantitative Western blotting, so providing the first
glimpse into the scale of protein abundance in a complete
organism [5]. Using a similar library where proteins were
tagged with GFP, two studies then measured relative
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Box 1. Fluorescent techniques for single cell gene expression analysis

Fluorescent techniques are the most direct tools for measuring

protein and mRNA concentrations in single cells. Detection of single

mRNAs has been used in multiple labs as a method for quantitative

gene expression analysis [3,25,26]. Single-protein detection in cells,

however, is technically still very challenging, and most measure-

ments of protein distributions are achieved by quantifying relative

protein abundance [5]. For both protein detection and RNA detec-

tion, one can obtain frequency distributions by looking at a single

cell over time – or by looking at many cells at a particular instant in

time [46]. In live cell measurements, one can measure kinetics

directly; in fixed cell measurements, dynamics are inferred from the

frequency distributions.

Protein detection

The two commonly used methods to measure protein concentration

in single cells are Fluorescence-activated cell sorting (FACS) and live

cell microscopy. Both measure signals emitted by florescent proteins.

FACS has been used extensively to determine the expression

variation of a collection of >2500 yeast genes [6,7]. However, its

limited sensitivity does not allow the detection of low-abundance

proteins. In addition, each cell is only analyzed once. Live cell

microscopy on the other hand acquires time series of individual cells,

resulting in a direct measure of expression kinetics, and fluorescence

microscopy is more sensitive than FACS. However, fewer cells are

analyzed compared to studies using FACS [13].

RNA detection

Fluorescent in situ hybridization (FISH) allows the detection of single

mRNAs in intact cells (Figure 1A) [3,25,56]. FISH is the most direct way

to acquire quantitative mRNA expression data because no genetic

manipulations are required. However, cells have to be fixed and FISH

only provides a snapshot of mRNA abundance and gene activity.

Similar to FACS measurements of protein distribution, FISH provides

information on the kinetics of expression by considering many cells at a

snapshot in time. Using probes labeled with different dyes, FISH can

also be used to measure the expression levels of multiple genes within

the same cell [55]. In contrast to FISH, the MS2 system allows mRNA

detection in living cells (Figure 1B). Single cytoplasmic mRNAs as well

as nascent transcripts at the site of transcription are detected in real

time using this fluorescent-protein-based approach [27,28]. Yet, single

mRNA counting in living cells is challenging: simultaneous single

mRNA abundance and nascent mRNA quantification has not yet been

described in living eukaryotes. However, MS2 is the only system that

can directly visualize mRNA expression in real time (see also Table 1).
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protein concentrations by FACS and determined the varia-
bility of protein expression for proteins inS. cerevisiae (Box
1) [6,7]. Measuring the abundance and variation of indi-
vidual proteins provided a quantitative basis for assessing
different models of expression regulation. By combining
absolute numbers and expression variability, and comple-
mented by earlier studies measuring expression variation
of small sets of proteins, these studies concluded that
variation in protein expression is dominated by the sto-
chastic production/destruction of messenger RNAs on a
scale that reflects natural protein abundance [8–12]. This
variation in expression arising from stochastic fluctuations
has been referred to as ‘noise’ in gene expression. These
studies suggested further that protein-specific differences
in noise correlate with a protein’s ‘mode’ of transcription, in
other words the kinetic details of how a gene is transcribed
into mRNA [8–12].

These models still contained unknown parameters. One
is how many proteins are translated from a single mRNA.
Knowing the number of proteins per cell and the number of
proteins per mRNA is crucial to understanding the sto-
chastic variation of gene expression that has been
observed.

Visualization of single proteins in single cells defines the
ultimate sensitivity of quantifying gene expression. How-
ever, in addition to simply observing single molecules, one
must be able to record each and every protein molecule in
the cell at a given time, or produced from a given mRNA.
This mandate exceeds the already stringent experimental
conditions required for single-molecule microscopy, and
demands a new set of experimental approaches. One
approach was realized in a landmark paper in 2006 by
Yu and coworkers in E. coli [13]. The authors attached the
fluorescent protein Venus to a membrane protein, Tsr,
constituting a reporter for monitoring lac operon activity.
The membrane localization of Venus slowed the diffusion
of the reporter protein so that it could be visualized under
the microscope. After the protein was imaged, it was
immediately bleached in preparation for observing the
next membrane-localized Venus. Protein production was
based on the dissociation event of the repressor from the
operator region of DNA. Using this system the authors
were the first to observe that protein molecules are gener-
ated in bursts from a single mRNA. These bursts of protein
production are due to the relative rates of protein trans-
lation and mRNA degradation, and have fundamental
consequences for gene expression (see below). Protein-
bursting amplifies the variation that already occurs from
the stochastic production of RNA, because each mRNA can
produce multiple proteins before it is degraded (4.2 in the
case measured by Yu et al.). The same group also showed,
using a different method of cell lysis followed by enzymatic
amplification, that the yeast protein b-galactosidase is
synthesized in geometric bursts of 1.7 proteins/mRNA [14].

To date direct microscopic visualization and counting of
proteins for single-molecule gene expression measure-
ments has only been demonstrated in prokaryotes. Such
an approach may be quite challenging to implement in
eukaryotes where translational burst sizes are likely to be
larger because of the longer lifetimes of eukaryotic mRNA.
One approach to overcome this problem has been proposed
by Rosenfeld and coworkers [15]. Their method to obtain
absolute protein numbers is based on long-term obser-
vation of dividing cells. If partitioning of proteins at cell
division obeys a binomial distribution – where each
protein-partitioning event is independent – it is possible
to empirically determine the number of proteins present
before cell division. However, any approach seeking to
count fluorescent proteins will be confounded by protein
folding and maturation of the fluorescent protein chromo-
phore [16].

Measuring mRNA levels in single cells

Measuring protein distributions and determining the
amplitude of translation bursts has revealed different
parameters necessary for modeling gene expression
[1,2]. However, accumulation of proteins is the last step
of gene expression and is influenced by multiple upstream
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processes. Changes in protein levels can be caused by
changes in transcription rate, RNA or protein half-life,
translation efficiency or any combination thereof. To
understand the entire expression pathway, the individual
steps have to be analyzed independently, necessitating
direct measurements of transcriptional output by deter-
mining mRNA levels.

As with protein level measurements, in vitro ensemble
measurements were first used to quantify RNA and were
crucial to the understanding of gene expression at the
single-cell level, especially in yeast. Quantitative micro-
arrays showed that expression levels for more than 80% of
genes are very low, with fewer than two mRNA copies per
cell [17]. Combining mRNA copy number and half-life
allows the calculation of average transcription frequencies
for each gene [17]. These numbers, often in combination
with measurement of protein concentration and/or protein
noise, were used in many studies to model gene expression
kinetics. However, knowing only these numbers, compared
to the whole distribution at the protein level, have limited
the descriptive power of the models; in consequence it
became essential to determine the variability in mRNA
expression levels [6].

Different approacheswere then introduced to determine
mRNA concentrations in individual cells (Table 1): single-
cell quantitative PCR, single-cell microarrays, in situ fluor-
escent PCR, the MS2 system (described below), and single-
molecule resolution fluorescent in situ hybridization
(FISH) [3,18–26]. FISH proved to be a very fruitful
approach (Figure 1 and Box 1). Pioneered in a study by
Femino et al., single mRNA sensitivity FISH allowed the
detection of individual mRNAs in fixed cells and was able
to determine the exact number of mRNAs per cell for any
gene of interest [3,25,26].

Determining mRNA distribution in single cells showed
that the variability in expression levels for different genes
was much larger in higher eukaryotes than in yeast [3,26].
Integrating expression variability into kinetic models
revealed the existence of a range of kinetic modes by which
mRNAs are expressed. At one extreme, genes are tran-
scribed in bursts, where periods of activity are interspersed
by long periods of inactivity. In another mode, transcrip-
tion events are uncorrelated and uniformly distributed in
time. Raj and colleagues showed bursting expression for
two genes in higher eukaryotes [26]. Using a tetracycline-
induced reporter gene, the authors demonstrated that
mRNA levels vary considerably when the gene is activated
and showed that those distributions can only be explained
by bursting transcription. The second gene, the endogen-
ous gene coding for RNA polymerase II, showed a similar
bursting pattern of expression. These results suggested
that bursting of transcription might be the predominant
mode of expression in higher eukaryotes. On the other
hand, experiments in yeast showed a very narrow distri-
bution of the expression levels for three housekeeping
genes, suggesting that these genes do not burst but are
constitutively transcribed [3]. Their variability was low
enough to be explained by pure Poisson noise. Interest-
ingly, the same study also found a gene in yeast showing
much higher variability, suggesting that constitutive as
well as bursting transcription exists in yeast.
632
Bursting transcription was also described in E. coli [27].
Here, RNA was not detected by FISH but rather by using
the MS2 system. This approach uses a unique genetically
encoded tag that, when inserted into RNA and bound by
specific fluorescent proteins, allows mRNA detection in
living cells (Figure 1B) [28]. The advantage of this system
is that expression levels are monitored in real time, and
thus can provide expression data with high temporal resol-
ution. The MS2 system has only been applied to mRNA
counting in bacteria but will probably also be a powerful
tool in other organisms.

Observing transcription kinetics in single cells

With the inclusion of mRNA distributions, one can achieve
a more complete description of gene expression than is
possible by only considering protein distributions. How-
ever, mRNA levels are not a direct measure of transcrip-
tion per se. The inference of transcriptional dynamics that
comes from counting mRNA in fixed cells is limited by the
half-life of mRNA. For an mRNA with a 30 min half-life,
the steady-state cytoplasmic mRNA level reflects almost
an hour of mRNA expression. Moreover, transcriptional
responses are often fast and, depending on the length of a
gene, require only a few minutes to produce mRNA [29].

The observation of transcription kinetics at higher
temporal resolution can only be obtained by measuring
transcription directly. Single-cell methods for studying
transcription rely on the ability to detect nascent mRNAs.
Using the MS2 system, Chubb et al. studied the expression
of the developmentally regulated dscA gene in Dictyoste-
lium (Figure 1B). The study found that transcription
occurred in irregularly-spaced bursts, with the length
and amplitude of these bursts staying fairly constant
[30]. Transcription of the yeast CUP1 gene on the other
hand was shown to be achieved in a different manner.
Upon induction, mRNA production was constant over the
duration of activation [31]. The constant level of transcrip-
tion was rather surprising when compared to the binding
behavior of the transcriptional activator Ace1p that
regulatesCUP1 transcription. Using fluorescence recovery
after photobleaching (FRAP, described in this issue by
Lidke and Wilson) it was shown that Ace1p bound only
transiently to the CUP1 promoter, with a residence time of
less than two minutes, suggesting that constant rebinding
of Ace1p was required to ensure efficient transcription.

The low stability of promoter complexes in living cells
(determined by FRAP, as reviewed in Ref. [32]) appears to
be a common phenomenon, and might be one important
factor that defines transcription kinetics. Many activators
have very short dwell times at the transcription site, some
for only a few seconds, suggesting that activators do not
need to be bound stably to the promoter to stimulate
transcription [33–36]. Their affinity however might
regulate transcription frequency. Binding of the HSP
activator, that regulates Drosophila heat shock genes,
becomes very tight uponheat shock [37].Heat-shock genes
are very efficiently transcribed, and when transcription is
fully activated new transcripts are initiated approxi-
mately every four seconds [29]. It is possible that tight
binding of activators allows efficient transcription but
simultaneously reduces the flexibility to fine-tune the



Table 1. Summary of the most common methods for mRNA quantification and transcription analysis

Northern Microarray Real-time PCR RNA seq ChIP-ChIP FISH MS2

Ensemble Ensemble Ensemble Ensemble Ensemble Single cell Single cell

Determining
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hybridization

to array

Reverse

transcription/

PCR

mRNA

fragmentation/

adaptor

ligation/

amplification/

sequencing

Hybridization using

fluorescent probes

Insertion of

repeats/binding

of fluorescent

protein

mRNA quantification Relative intensity Relative intensity Absolute

numbers

requires

standard

Single-molecule

counting

Single-molecule
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Nascent mRNAs Nascent mRNAs
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in polymerase

loading

Counting of

nascent

mRNAs

Relative intensity

of mRNA signal

Number of genes Genome wide 1–3 per cell 1 per cell
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Figure 1. mRNA detection in single cells. Two common methods for single cell gene expression analysis using imaging. (a) Single-molecule-resolution fluorescence in situ

hybridization (FISH) uses synthetic oligonucleotides labeled at multiple positions with fluorescent dyes to detect single mRNAs. Multiple fluorescent probes are hybridized

to paraformaldehyde-fixed cells. FISH allows the detection of single mRNAs in the cytoplasm as well as nascent mRNAs at the site of transcription. On the right, yeast cells

expressing MDN1 mRNA and mammalian CHO cells (hamster cell line) expressing a doxycycline-induced reporter are shown [3,26]. (b) The MS2 system uses the specific

interaction between the MS2 RNA hairpin and a fusion of a fluorescent protein and the MS2 phage coat protein to create a fluorescent labeled mRNA. Inserting multiple

binding sites into an mRNA allows the detection of single mRNAs in living cells. The MS2 system has been used to count single mRNAs in different organisms, for example

in E. coli as shown here (with permission from Ref. [27]), or to determine transcription kinetics in Dictyostelium in real time (with permission from Ref. [30]). Sites of

transcription are marked by arrows.

Review Trends in Cell Biology Vol.19 No.11
transcriptional response. In addition, the position of the
activator binding sites with respect to histones was shown
to affect both transcription initiation and transcription
rate [38,39]. To further underscore the dynamic, probing
nature ofmolecular interactions at the gene, Darzacq et al.
showed that only about 1% of polymerase-gene inter-
actions lead to a completion of an mRNA [40]. There seem
to be many different dynamic ways to modulate the tran-
scriptional outcome, and a combination of methods will
probably be required to dissect this process, probably on a
gene by gene basis.

Constitutively expressed housekeeping genes in yeast
appear to use a relatively simple mechanism of expression
control. Zenklusen and colleagues used single-molecule
resolution FISH to determine the exact number of nascent
mRNAs located on constitutively expressed genes [3]. For
short genes expressed at a low level, only a single nascent
mRNA was detected on the gene. Given a transcription
elongation velocity of less than 1 kb per minute, this
suggested that the initiation of individual mRNAs was
separated by minutes. Taken together with the stability
of promoter complexes as described above, it is very likely
that assembled transcription factor complexes might fall
apart after initiating the production of a single mRNA. By
combining polymerase occupancy data (determined from
nascent mRNA at a transcription site) with the counting of
mRNAs within the same cell has further allowed modeling
of the expression kinetics of these genes; this revealed that,
634
for most genes, individual initiation events were uncorre-
lated with each other [3]. This simple regulation might
suggest the existence of a stochastic limiting-step that
controls expression behavior. Such a step may constitute
the binding of an activator, opening of chromatin, assembly
or stability of a pre-initiation complex, or the efficiency of a
polymerase to enter elongation. Measuring transcriptional
responses in real time with single-mRNA resolution will be
necessary to dissect these different possibilities.

Theoretical models of single-molecule gene expression

The advantage of counting single molecules is that one
obtains the probability distribution (or, more properly, the
frequency distribution) of molecules corresponding to each
stage of the central dogma for a single gene. The frequency
at which a certain number of proteins or RNA molecules
are observed in a single cell carries more information than
the mean alone: one is able to infer general rules and
mechanisms for expression based on comparisons between
mathematical models and the observed frequency distri-
butions. These mathematical models differ from those that
cell biologists are accustomed to encountering. Instead of
continuous, deterministic models of kinetic behavior, the
mathematics of gene expression is described by discrete,
stochastic models. This latter class of models takes into
account the small numbers of molecules involved – at both
themRNAand protein level – even though the basic kinetic
mechanisms (e.g. first-order kinetic decay of mRNA and



Figure 2. A stochastic model of gene expression. (a) Left, the central dogma of molecular biology – DNA to RNA to protein – is shown with rate constants of production and

degradation: the rate of transcription n0, the rate of RNA degradation d0, the rate of translation n1, and the rate of protein decay d1. Right, a model of gene induction known

as the Random Telegraph model. The gene transitions between an inactive ‘off’ state and an active ‘on’ state (red line). From the active state, transcript initiation events

(vertical green lines) are separated by an average time interval n0
-1. (b) The probability distributions (Px) for each step of MDN1 expression, from left to right: nascent RNA at

a transcription site (Pm, m = number of nascent chains), total cellular mRNA (Pr, r = number of mRNA), proteins/mRNA (Pn, n = number of proteins/mRNA), and total protein/

cell (PN, N = number of proteins/cell). The gray symbols are published data; the red lines are theoretical fits using the equations shown below each panel. The data for

nascent transcripts and total mRNA are from Ref. [3]. There are no experimental data for proteins/mRNA for MDN1. The data for total protein/cell were reported as a mean

and variance (s2) (Refs. [5,6]), shown here as a Gaussian distribution. The parameters in the probability distributions are shown in panel A. t is the time to synthesize an

MDN1 transcript. G denotes the gamma function. Upon degradation, neither the RNA nor the protein is considered in the probability distribution, so the state of degraded

RNA and degraded protein is indicated by the symbol f. Two additional symbols are used for simplicity: a is the ratio of transcription rate/protein degradation rate (n0/d1); b

is the translation rate/RNA decay (n1/d0), also known as the protein burst size. For MDN1, a = 19, b = 29.
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protein) is physically the same in both cases [41]. Indeed,
there has been a tremendous amount of parallel develop-
ment both in the theoretical models that predict single-
molecule distributions and in the experimental techniques
able to measure these distributions. In many cases there
has been excellent agreement between the model and the
experiment, enabling the distillation of a large body of
work on gene expression, for example in S. cerevisae, into
a few numbers.

The Random Telegraph model

A description of gene expression that has gained wide
popularity, both for its simplicity and generality, is one
in which a gene can be considered ‘off’ (incapable of produ-
cing transcripts), or ‘on’ (capable of producing transcripts)
(Figure 2A).When the gene is ‘on’, transcripts are produced
at a certain initiation rate (n0, following the notation of Ref.
[42]). These transcripts are degraded at a rate d0, and are
translated into protein at a rate n1, that likewise is
degraded at a rate of d1. This model of gene induction,
sometimes called a Random Telegraph model [41], was
first proposed by Ko [43] and later expanded by Peccoud
and Ycart [44]. This model results in a set of stochastic
differential equations known as the master equation that
explicitly takes into account the random nature of events
associated with single molecules [44]. The solution to this
master equation describes gene expression – from gene to
mRNA to protein – at the single-molecule level and takes
the form of a probability distribution. Obtaining this
solution under various limiting cases is the basis for a
quantitative understanding of gene expression.

The steady-state solution was first obtained by Raj and
coworkers [26] after Paulsson and coworkers [58] who used
it to explain the distribution of PolII mRNA in fixed cells.
This elegant work, both experimental and theoretical,
demonstrated how variation in expression begins with
the process of transcription. Recently, a time-dependent
solution to the master equation was reported by Shahre-
zaei and Swain [42] and by Iyer-Biswas and coworkers [45].

The primary implication of the telegraph model is that
variation in gene expression is greatly increased through
the process of transcriptional or translational bursting.
Mathematically, transcriptional bursting means simply
that many transcripts are produced from a single tran-
scription ‘on’ state [26,27,43,46,47]; translational bursting
means that many proteins are produced from a single
mRNA [11,13,14,48–50]. Biologically, a transcriptional
burst may be due, for example, to the stability of a tran-
scription pre-initiation complex, leading to many tran-
scripts produced from a stable complex [26,27,43].
Transcriptional bursting does not occur for all genes but
is rather one limiting kinetic case that can be observed [3].
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A translational burst is due to the fact that translation
frequency (n1) is greater than mRNA decay frequency (d0)
for most genes [9,42,47,48]. The translational burst from a
single mRNA follows a geometric distribution [48,50] (see
also Figure 2B), and has been observed directly [13,14].
Intuitively, this geometric distribution can be understood
as the relative frequency of encounter of a single mRNA
with either the translation machinery or the RNA decay
machinery. When translation frequency is greater than
RNA decay frequency, the mRNA is more likely to be
translated than degraded. So the probability of a burst
of n proteins is the probability of encountering the trans-
lation machinery n times in a row before encountering the
decay machinery once [48]. The result is a long-tailed
decaying distribution for the number of proteins permRNA
that is very different from the peaked distribution of
proteins/cell (Figure 2). In the former case, the mean
number of proteins translated from a single mRNA is
the ratio of translation/mRNA decay (n1/d0), but the most
likely number of proteins translated from a single mRNA is
zero. Thus, the balance of production and decay not only
determines the mean, but also the relative variation,
providing the cell with a means of limiting or enhancing
variability according to selective pressure [10].

Variation in the central dogma: comparing theory and

experiment

The consequences of stochastic gene expression, and the
success of the stochastic model in explaining measured
frequency distributions, can be illustrated by considering
the S. cerevisae gene MDN1 that encodes a protein
involved in ribosome biogenesis. The gene is a housekeep-
ing gene which is necessary for survival and is present at
low copy number in every cell (Figure 2B). For this gene,
the model can be simplified even further because the gene
is always ‘on’, producing transcripts in single uncorrelated
events [3]. The steady-state solution to the master
equation for mRNA distribution then becomes a Poisson
distribution. The measured distribution of nascent chains,
mRNA/cell, and protein/cell are shown in Figure 2B as gray
bars. The theoretical probability distributions are shown
as red lines, with the corresponding equation shown under-
neath. There are no free-fitting parameters in these curves
– the kinetic rate constants are the initiation frequency (n0,
obtained fromZenklusen et al., Ref. [3]), the RNAdecay rate
(d0, obtained from Holstege et al., Ref. [17]), the translation
rate (n1, obtained fromArava etal., Ref. [51]), and theprotein
decay rate (d1, obtained fromBelle et al., Ref. [52]). The final
output is theproteinabundanceandvariation, fromGhaem-
maghami et al. [5] and Newman et al. [6], respectively.
Although MDN1 is a simple example of gene expression,
the complete agreement between theoretical, biochemical,
and microscopic data from multiple laboratories is a mile-
stone in our description of gene expression.

The immediate question that arises from the telegraph
model of gene expression is: what is the biological
interpretation of the ‘on’ and ‘off’ states or the ‘active’
and ‘inactive’ states? In some cases it has been possible
to connect an on/off state with a direct biological correlate,
for example nucleosome remodeling around the promoter
[12]. However, other scenarios might apply for different
636
genes, and could be as simple as the kinetic dwell-time of a
specific factor or as global as a stage of the cell cycle [3]. The
strength of this mathematical description lies in the ability
to classify a wide range of behaviors in a few generic rate-
constants. Although a complete thermodynamic descrip-
tion of a particular regulatory unit based on kinetic rate-
constants is always desirable [53], for a great many genes,
especially in eukaryotes, this description requires a level of
detailed understanding of the constituent elements that is
not yet available. Therefore, models such as the telegraph
model (and multi-state extensions thereof, Ref. [54]), pro-
vide an abstract intermediate for classification that seems
particularly suited to the complexity of cell biological
studies.

Outlook

The ability to count molecules within cells is an important
step towards a more quantitative analysis of gene expres-
sion. Just as high-throughput sequencing markedly
advanced our knowledge of gene expression by counting
sequence tags, single-molecule counting in cells has intro-
duced a new era in quantitative gene expression analysis
(Table 1). Integrating these numbers into mathematical
models will reveal important insights into themechanisms
of gene expression. One limitation is that singlemRNAand
protein counting is still limited to a few genes per cell,
compared to entire genome capability in techniques such
as RNA sequencing. The ability to analyze several genes
simultaneously within single cells will provide a systems-
level understanding at the single-molecule level [55,56].

One of the experimental challenges in a complete quan-
titative description of gene expression is to obtain
measurements of the distribution of proteins translated
from a single mRNA. Implicit in the theoretical model
above is the assumption that translation events and
mRNA decay events are independent. This assumption
results in the geometric distribution of protein/mRNA.
However, in many cases this assumption may not hold,
and there is a competing model where translation leads to
modifications of the mRNA that make the RNA increas-
ingly likely to be degraded [57]. At present, there is an
order of magnitude disagreement between different esti-
mates of protein burst sizes in S. cerevisae. Bar-Even and
coworkers report an average calculated protein burst size
for > 40 genes to be � 1200 (Ref. [7]), Cai et al. measure a
burst for a single gene of 1.7 (Ref. [14]), and theMDN1 gene
has a calculated burst size of 30 (Refs. [3,17,51]). To better
understand how protein production is controlled from
single mRNAs it will be necessary to achieve both
single-RNA and single-protein imaging in the same cell.

This combination of systems biology, computational
biology, and single-molecule microscopy lays the ground-
work for a quantitative understanding of gene expression
that will expand rapidly in the coming years.
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