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Mechanisms and cellular roles o
f local protein synthesis in
mammalian cells
Alexis J Rodriguez*, Kevin Czaplinski*, John S Condeelis
and Robert H Singer
After the export from the nucleus it turns out that all mRNAs are

not treated equally. Not only is mRNA subject to translation, but

also through RNA-binding proteins and other trans-acting

factors, eukaryotic cells interpret codes for spatial sorting

within the mRNA sequence. These codes instruct the

cytoskeleton and translation apparatus to make decisions

about where to transport and when to translate the intended

protein product. Signaling pathways decode extra-cellular

cues and can modify transport and translation factors in the

appropriate cytoplasmic space to achieve translation locally.

Identifying regulatory sites on transport factors as well as novel

physiological functions for well-known translation factors has

provided significant advances in how spatially controlled

translation impacts cell function.

Addresses

Department of Anatomy and Structural Biology, Albert Einstein College

of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States

Corresponding author: Singer, Robert H (rhsinger@aecom.yu.edu)
* These authors made equal contribution to this manuscript.
Current Opinion in Cell Biology 2008, 20:144–149

This review comes from a themed issue on

Cell regulation

Edited by Alan Hall and Joan Massagué
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Introduction
Spatial regulation of translation within the cytoplasm

results in the accumulation of newly synthesized proteins

in discrete locations of the cell. The most widely studied

mechanism to spatially restrict protein synthesis is

through active sorting of the template for translation

within the cytoplasm, often termed mRNA localization

[1]. mRNA localization allows cells the flexibility to

determine the exact place and time of protein synthesis

in the absence of de novo transcription providing a mech-

anism to quickly respond to changes in their extra-cellular

environment. The information required for localization is

contained within the mRNA sequence. There are many

potential mechanisms to explain how a nucleic acid

sequence distributes an mRNA within the cytoplasm

[1]. It is possible that sequences within the mRNA
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interact directly with cytoskeletal elements [2], though

most current models for localization suggest that mRNA

sequences interact with subsets of RNA-binding proteins,

forming a localizing ribonucleo-protein (L-RNP) com-

plex. The L-RNP localizes through interactions with

cytoskeletal elements either directly or indirectly. There-

fore, in addition to carrying the information required for

protein synthesis, an mRNA contains sequences whose

purpose is to select the appropriate complement of trans-
acting factors to achieve proper spatio-temporal regula-

tion of translation.

Many localized mRNAs are translationally repressed, and

it has been hypothesized that this is to prevent ectopic

synthesis during transport [1]. Localized mRNAs need to

associate with localizing factors as well as reversible

translational repressors that are responsive to spatial cues

in the cytoplasm. To ensure repression in the cytoplasm,

translational regulatory factors join the mRNA as soon as

it is synthesized in the nucleus [3��]. The activities of

these localization and translational repression factors

need to be coordinated to achieve the proper timing of

events and can be contained within a single factor or

provided by interacting factors. As a consequence, a great

deal of study has been devoted to the formation and

function of the components of RNP complexes. Global

analysis of mRNA associated with RNP components has

observed that many of them associate with multiple

functionally related mRNAs [4�]. Thus the cell’s ability

to respond to extra-cellular signals may be coordinately

regulated through RNPs by initiating the translation of

many members of a multiprotein complex at the same

time and place [4�]. This central role of RNP complexes

in spatial control of translation will be illustrated through

one well-known mammalian mRNA localization factor,

ZBP1. Other systems, such as yeast and Drosophila oper-

ate through parallel mechanisms and will not be detailed

here because of space restrictions [5,6].

ZBP1 is a Src-dependent translational
repressor
ZBP1 is an RNA-binding protein isolated from chick

embryo fibroblasts based on its affinity for a cis-acting

54 nucleotide cytoplasmic localization elements within

the 30UTR of b-actin mRNA known as the zipcode [7].

The zipcode sequence was necessary and sufficient for

the peripheral targeting of RNA [8]. ZBP1 functions as a

translational inhibitor by preventing 80S ribosomal com-

plex formation [3��]. Importantly, Src phosphorylation of
www.sciencedirect.com
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ZBP1 at tyrosine 396 resulted in translational derepression

[3��]. A nonphosphorylatable ZBP1 mutant prevented

translational derepression resulting in decreased periph-

eral actin and aberrant neurite outgrowth [3��]. Interest-

ingly, b-actin translation sites were redistributed to the

perinuclear cytoplasm in myoblast cells containing a trans-

fected b-actin mRNA lacking the zipcode, supporting

the hypothesis that the interaction between ZBP1 and

the zipcode prevents precocious translation [9��]. IMP1

(the human ortholog to ZBP1) RNP complexes, biochemi-

cally isolated from HEK293 cells contain exon junction

complex components and lack eIF4E, eIF4G, and 60S

ribosomal subunits suggesting that IMP1-associated

mRNAs have not undergone translation [10]. In addition,

a mouse ortholog of ZBP1 represses the translation of

insulin-like growth factor II mRNA in a developmentally

regulated manner [11]. Altogether these data demonstrate

that an interaction between ZBP1 and the zipcode is

required to regulate b-actin mRNP complexes at the level

of localization and translation. In this case, the localization

and translational repression activities for b-actin mRNP

complexes are present within a single trans-acting factor,

and phosphorylation of this factor coordinates these activi-

ties.

b-Actin mRNA is targeted in a Rho-
dependent manner
In chicken embryo fibroblasts, b-actin mRNP complex

targeting to the cell periphery was induced with serum or

PDGF implicating signal transduction pathways in this

process [12]. Inhibiting tyrosine kinase activity prevented

PDGF-induced b-actin RNP complex targeting [12]. Rho

GTPases were similarly involved in localization as Rho

inhibitors and a dominant negative RhoA reduced serum-

induced peripheral targeting of b-actin mRNP complexes

while peripheral targeting increased in the presence of

constitutively active RhoA [13]. In addition, ROCK inhi-

bition reduced b-actin mRNP complex targeting while

overexpression of p160ROCK increased targeting [13].

These data indicate RhoA and its downstream effector

ROCK are required for b-actin mRNP complex targeting

to discrete cytoplasmic sites. Consistent with the hypoth-

esis that functionally related mRNAs may be coordinately

regulated, all seven mRNAs of the Arp 2/3 complex are

targeted to cellular protrusions in what is thought to be a

Rho GTPase-dependent manner [14�]. Thus RhoA and

ROCK signaling is required for peripheral targeting of

RNP complexes.

ZBP1, adhesion, and metastasis
ZBP1 levels in motile tumor cells collected in an in vivo
collection assay were reduced 10-fold compared to the

levels in cells remaining in the tumor, inversely correlat-

ing ZBP1 levels with metastatic potential [15,16]. Con-

trasted with this, high levels of IMP1 correlated with poor

prognosis in ovarian carcinomas and with metastasis in

colon cancer [17,18]. Given ZBP1’s role as a translational
www.sciencedirect.com
regulator and localization factor, it is not surprising that

ZBP1 expression could result in disparate effects because

different substrate mRNAs can be found within ZBP1-

containing RNP complexes in different cell backgrounds.

Thus ZBP1 may act as an RNA regulon serving to

integrate signals required for mRNA targeting and local

translation of RNP complexes containing functionally

related transcripts [4�,19].

Areas with high RhoA activity and high Src activity are

likely sites of ZBP1 RNP complex translational derepres-

sion establishing a local translation signature for ZBP1-

containing RNP complexes [3��,13] This local translation

signature is found at cell–cell and cell–substrate adhesion

complexes suggesting that ZBP1-mediated local b-actin

translation may occur at these sites. In fact, full-length b-

actin mRNA is locally translated and accumulated at cell–

cell contacts in myoblast cells. By contrast, b-actin mRNA

lacking the zipcode caused mislocalization of b-actin

translation sites resulting in a significant reduction in

the amount of N-cadherin targeted to adherens junctions

[9��]. Several studies support a role for ZBP1-mediated

local translation in regulating cellular adhesions

[9��,20�,21,22��,23]. Depletion of IMP1 from HeLa ade-

nocarcinoma cells resulted in a decrease in cell–cell

contacts, reduced invadopod formation and delayed cell

spreading [20�], and a ZBP1 paralog was found at spread-

ing initiation centers following replating in culture [21].

Moreover, b-actin, N-cadherin, b-catenin and other mem-

bers of adherens junction complexes contain putative

zipcode sequences suggesting that all of these mRNAs

may be coordinately regulated. These data provide a

physiological context for localized translation and may

explain how ZBP1 functions as a metastasis suppressor in

certain cell types [16,22��]. Loss of ZBP1 expression in

these cells may weaken cell–cell contacts at the level of

adherens and tight junctions resulting in cells that no

longer have an intrinsic polarity and are not attached as

strongly to their neighbors making it easier for these cells

to orient and move toward chemo-attractant gradients

that entice cells to move out of the tumor.

Localized translation in neurons
The mammalian nervous system has emerged as a

particularly influential system for studies of localized

translation and significant progress in our understanding

the impact of spatially regulating translation has come

from studies in neurons. At least two events in differ-

entiated neurons have been proposed to involve localized

translation within distinct domains of the cytoplasm. The

first role for localized mRNA translation in developing

neurons is within the growth cones of axons and is

involved in axon guidance in response to guidance cues

as well as during axon regeneration after injury

[24�,25�,26��]. Interestingly, the ZBP1-dependent local-

ization system may play a role in this process similar to the

one it plays in cell motility because b-actin mRNA and
Current Opinion in Cell Biology 2008, 20:144–149
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the Xenopus ZBP1 homolog, Vg1RBP/Vera, have both

been recently demonstrated to localize to growth cones of

Xenopus retinal axons [24�,25�]. Previously it was also

demonstrated that ZBP1 and localization of b-actin

mRNA played a role in dendritic spine formation of

rodent hippocampal neurons [27,28].

A second role for localized translation in neuron cyto-

plasm is in synaptic plasticity (Figure 1). Early studies

examining the long-term changes that occur at synapses

following stimulation recognized that new protein syn-

thesis was required for later phases of these changes to

occur [29,30]. Modification of specific translation factors

in response to synaptic activity has been defined recently

and these studies have begun to reveal the molecular

mechanisms by which activity influences translation in

neurons. There have been two major avenues of inves-
Figure 1

Spatial control of mRNA translation in neurons. Localizing mRNAs targeted

nucleus, helping to ensure stringent translational repression. In the cell soma

(gray circle) form the L-RNP. In one pathway, an L-RNP is actively transpor

guidance cues activate local signal transduction pathways (yellow stars). Th

kinase) that modify components of the transport and/or translation machine

subunits) of the mRNA toward the direction of the guidance cues to aid in the

transported into the dendrites (dendritic mRNA transport). At the postsynap

activity activates signal transduction pathways, activating kinases that modi

local translation of the mRNA in the vicinity of the guidance cues. The lack o

does not cause translational derepression at these sites.
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tigation into the influence of synaptic activity on the

translation machinery, one focused on the targeting of

mRNAs specifically to the axons or dendrites of neurons

and the other focused on the regulation of the general

translation machinery because of synaptic activity. These

two pathways likely operate together to achieve local

protein synthesis within the processes of neurons.

Targeting mRNA to active synapses
In mature neurons, specific targeting of mRNAs to dis-

tinct locations within the cytoplasm provides the cell with

a very powerful way to rapidly affect the concentration of

particular proteins at regions of the neuron quite distal to

the nucleus, a particularly important function when the

lengths of some neuronal processes can reach several

orders of magnitude over the length of the cell soma

[31,32]. Based on global analyses of mRNA content
to the neuronal processes begins RNP (L-RNP) formation within the

after export the mRNA (blue line) and associated RNA binding proteins

ted along the axon (axonal mRNA transport) to the growth cone where

is activates kinases (open circle; inactive kinase, red circle; activated

ry, resulting in local translation (represented by 40S and 60S ribosomal

navigation of the growth cone. In another pathway an L-RNP is actively

tic region of activated synapses (green presynaptic terminal) synaptic

fy components of the transport and/or translation machinery, resulting in

f activated kinases at nonstimulated synapses (red presynaptic terminal)
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within the processes of neurons it is clear that not all

cellular mRNAs are present at these distal sites [33–35].

As the mRNA content within neurites is not equivalent to

the population of mRNA present within the whole cell, it

is reasonable to hypothesize that mRNAs are under active

sorting mechanisms in the neuronal cytoplasm.

Recruitment of individual mRNAs directly to active

synapses has not been demonstrated directly, but many

results indicate that synaptic activity influences the distri-

bution of mRNA as well as mRNA-binding factors within

the processes of neurons [27,36–39]. Several RNA-binding

proteins demonstrate enrichment within microscopically

observable punctate structures, both in fixed cells as well as

in living cells using fluorescent protein chimeras [40,41].

Fluorescent mRNAs capable of transporting into neuronal

processes can be found in similar formations after micro-

injection, and general RNA staining dyes also show punc-

tate staining [42,43]. Based on all of these observations,

RNPs have been proposed to transport within entities that

have been called RNA granules [40]. The heterogeneous

nature of these RNA containing entities within the cyto-

plasm has made it challenging to gather information on

specific mRNA transport pathways by studying them.

Despite this, it is abundantly clear that synaptic activity

influences the distribution and motility of these entities,

and based on this it has been proposed that mRNA

localizes to active synapses through the RNA-binding

factors and activities associated with RNA granules.

Micro-RNAs (miRNAs) are a very recent addition to the

repertoire of trans-acting factors that are involved in recog-

nizing mRNA sequence. miRNAs are endogenous small

RNAs (21 nt) that have complementarity to sites within

subsets of mRNAs and as a result provide sequence specific

binding to those mRNAs [44]. miRNA-targeted mRNAs

are post-transcriptionally silenced through translational

repression and perhaps enhanced mRNA turnover [45].

The miRNAs are part of a much larger multiprotein com-

plex, and the mRNA–miRNA interaction functions to

target this complex to an mRNA [45]. Several RNA-bind-

ing proteins implicated in the transport of mRNA as well as

translational control and stability of mRNA have been

found among the components of these miRNA-associated

complexes [46]. Moreover, components of miRNA RNP

complexes are found in processes and at synapses, and one

particular interaction (miR134-Limk1 mRNA) is import-

ant for controlling the size of dendritic spines in a synaptic

activity sensitive mechanism [47��,48�]. Although it has not

been shown that mRNA–miRNA interaction functions to

localize mRNAs to the processes of neurons, this is evi-

dence that mRNA–miRNA interactions might repress

translation of mRNAs that do get localized.

Global activity, local effect
Recent work involving the translation machinery in

neurons has also provided novel insights into how regu-
www.sciencedirect.com
lation of the general machinery may participate in spatial

control of translation within the cytoplasm. The example

most relevant to neuron function in learning and memory

comes from studies of GCN2, an eIF2a kinase. eIF2a

phosphorylation status appears to play a central role in

controlling expression of the CREB-antagonizing ATF4

transcription factor [49�,50��]. ATF4 acts to repress

memory formation that is stimulated by CREB-mediated

transcription, and GCN2�/� mice make less ATF4,

therefore memory formation is enhanced [49�]. The

effect of GCN2 ablation in this process being due to

eIF2a is supported by mice harboring a mutated eIF2a

allele, that prevents the inhibitory GCN2 phosphoryl-

ation, also showing enhanced memory formation [50��].
This suggests an attractive model for spatial control of

translation where at the activated synapses in the

neuronal memory circuit, local changes in eIF2a phos-

phorylation lead to the effects on ATF4 protein pro-

duction. It has not been demonstrated directly that

eIF2a is only modified locally or that ATF4 is translated

at active synapses. However, given the strong spatial

partitioning of synapses within the cytoplasmic volume

of a neuron it is feasible that controlling a general

factor by local activation from individual synapses

can provide spatial control of translation of specific

mRNAs. Recent publications have also explored respon-

siveness of the general translation machinery to synaptic

activity suggesting that multiple mechanisms of transla-

tional control may be impacted by synaptic activity

[51�,52,53�,54].

Concluding remark
In this review, we examined data on the physiological

consequences of mRNA localization and local translation

in both somatic and neuronal cells. Emerging evidence

indicates that RNP complexes containing translational

silencing factors are key mediators of a cell’s initial

response to extracellular environmental changes. In cer-

tain carcinoma cells, ZBP1-mediated regulation of b-actin

translation sites may be required to prevent progression to

metastasis. In neurons, regulated local translation occurs

within growth cones to impact guidance as well as at

synapses to effect plasticity in learning and memory.

These examples underscore the importance of mRNA

targeting and local translation on the physiology of

multiple cell types.
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