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Messenger RNA (mRNA) molecules are
transcribed in the nucleus and then
undergo export into the cytoplasm,
where they are translated to produce
proteins. Some mRNA transcripts do not
immediately undergo translation but,
instead, are directed to specific areas for
local translation or distribution. This
produces an asymmetric distribution
of cytoplasmic proteins, providing

localized activities in polarized cells or
developing embryos. Studies of the
localization process in various
eukaryotic systems have unearthed
numerous nuclear RNA-binding proteins
(RBPs) involved. We present here some
representative examples from different
organisms.

General features of mRNA
localization systems
mRNA transcripts are coated by a
variety of RBPs. Some of these are
essential for mRNA localization and
can be detected even when the mRNA
is still nuclear. In many cases, specific
sequence elements, ‘zipcodes’, in the
untranslated region (UTR) form a
secondary structure that serves as a
docking site for the RBPs and thus
promotes the localization process.

Localizing mRNAs are shuttled to
specific areas of the cell or the organism
along cytoskeletal elements such as
microtubules or actin filaments. They
seem to be actively translocated by
motor proteins of the myosin, kinesin
and dynein families. Although our
knowledge of the components of the
mRNP complexes is growing, the list
we give here is by no means
comprehensive and merely a general
impression of the multitude of
interactions necessary for the
localization process. 

Mammalian cells
mRNA localization in fibroblasts
�-actin mRNA localization has been
identified in several mammalian systems
(Lawrence and Singer, 1986). In
migrating fibroblasts, �-actin mRNA is
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localized to the leading edge of the cells
(Lawrence and Singer, 1986). This
correlates with the elevated levels of �-
actin protein required in lamellipodia,
which depend on the rapid
polymerization of actin for cell
movement (Condeelis and Singer, 2005).
Zipcode sequences (Kislauskis and
Singer, 1992) immediately downstream
of the stop codon (Kislauskis et al.,
1993) recruit the zipcode-binding
protein ZBP1 by interacting with its KH
domains (Ross et al., 1997; Farina et
al., 2003). ZBP1 and �-actin mRNA
associate in the nucleus (Oleynikov and
Singer, 2003) and travel in cytoplasmic
granules to the leading edge. ZBP2, a
predominantly nuclear protein, also
binds the zipcode and affects
localization (Gu et al., 2002).
Translation is thought to be inhibited,
perhaps by ZBP1, until the mRNA
reaches the lamellipodia. �-actin-
containing granules are transported on
actin filaments (Sundell and Singer,
1991) and might anchor at specific sites
through interactions with EF1� (Liu et
al., 2002). The responsible motor is
unidentified, although inhibition of
myosin activity does disrupt the process
(Latham et al., 2001).

The formation of the branched actin
cytoskeleton at the protruding edge of
migrating fibroblasts requires the Arp2/3
complex (Machesky et al., 1994). This
seven-subunit complex (Machesky et al.,
1997; Mullins et al., 1997; Welch et al.,
1997), caps the slow-growing ends of
actin filaments, while stabilizing the
fast-growing polymerizing ends. The
seven mRNAs that encode Arp2/3
subunits are all localized to the leading
edge of fibroblasts, which supports the
idea that localized translation of
functionally-related mRNAs is coupled
to the assembly of complexes (Mingle et
al., 2005).

mRNA localization in the neuronal
system
mRNA localization mechanisms also
allow local translation in the extremities
(dendrites and axons) of cells from the
neuronal system (Job and Eberwine,
2001). The mRNAs typically travel
from the cell body in granules that
contain several copies of the mRNA or
several types of mRNA. Myelin basic

protein (MBP) mRNAs, for example,
are targeted to the myelin membranes of
oligodendrocyte cell processes (Ainger
et al., 1993). They probably associate
with microtubules through a kinesin
motor (Carson et al., 1997) and are
bound by the RNA-binding protein
hnRNP A2 (Hoek et al., 1998). Other
examples are localization of CamKII�
mRNA by kinesin in hippocampal
dendrites (Kanai et al., 2004; Rook et
al., 2000) and translocation of tau
mRNA on microtubules in axons, in
which a relative of ZBP1, IMP-1, is
involved (Atlas et al., 2004). �-actin
mRNA is localized to neuronal growth
cones and hippocampal dendrites
through similar association with ZBP1
(Bassell et al., 1998; Eom et al., 2003).
Long-distance translocation occurs
along microtubules (Zhang et al.,
2001), using an unidentified motor
protein, probably kinesin (our
unpublished data). Since the distance
between dendrites or axons and the cell
nucleus can be extremely large, this
localization mechanism allows rapid
translational responses that are
independent of the ongoing
transcription in the nucleus.

Budding yeast
Actin-based translocation of localized
mRNAs also occurs in yeast (Darzacq et
al., 2003; Gonsalvez et al., 2005). In
budding yeast, many RNAs translocate
from the mother cell into the budding
daughter cell and concentrate at the bud
tip (Shepard et al., 2003). One of the best
studied examples is ASH1 mRNA (Long
et al., 1997; Takizawa et al., 1997).
Ash1p is a nuclear DNA-binding protein
required for control of mating-type
switching, and its asymmetric
distribution causes the repression of HO
endonuclease expression only in the
daughter cell (Bobola et al., 1996; Sil
and Herskowitz, 1996). ASH1 RNA is
moved along actin filaments by a type V
myosin, She1p/Myo4p, as part of an
RNP complex termed the locasome
(Beach et al., 1999; Bertrand et al.,
1998). She2p is an RBP that binds to the
ASH1 mRNA zipcode sequences in the
nucleus, accompanies the mRNA in the
cytoplasm (Bohl et al., 2000; Long et al.,
2000; Niessing et al., 2004) and bridges
the connection to the motor via She3p
(Takizawa and Vale, 2000). Once at the

bud tip, ASH1 mRNA might be anchored
to cortical actin. The Puf6p protein
interacts directly with the ASH1 mRNA
and represses its translation during
translocation to the daughter cell (Gu et
al., 2004). Because Puf6p is nuclear, it
might associate with ASH1 mRNA in the
nucleus. Khd1p is a component of the
locasome and localizes with ASH1
mRNA at the bud tip and also inhibits
translation (Irie et al., 2002). Loc1p is
another nuclear protein that associates
with ASH1 mRNA and might be
important for mRNP assembly (Long et
al., 2001).

Xenopus
Several mRNAs are localized to the
different poles of Xenopus oocytes (Kloc
and Etkin, 2005). The unequal
distribution of specific mRNAs results in
the development of unique daughter
cells, providing a means by which germ
cell lineages are defined and the primary
axis for development is established. Vg1
protein is a member of the transforming
growth factor � (TGF�) superfamily and
has roles in mesoderm and endoderm
development. Vg1 mRNA is localized to
a tight region in the vegetal cortex of
frog oocytes during oogenesis (Melton,
1987). It harbors a zipcode (Mowry and
Melton, 1992) that interacts with the
protein Vg1-RBP/Vera (Deshler et al.,
1998; Havin et al., 1998; Schwartz et al.,
1992) through its KH domains (Git and
Standart, 2002) and mediates association
with microtubules (Elisha et al., 1995).
Xenopus Vg1-RBP/Vera is highly
related to mammalian ZBP1, and both
are part of a family of closely related
RBPs involved in RNA regulation
(Yisraeli, 2005). Movement of Vg1
mRNA along microtubules (Yisraeli et
al., 1990) could involve kinesin motors
and the Staufen RBP (see below)
(Allison et al., 2004; Betley et al., 2004;
Yoon and Mowry, 2004). Interestingly,
during these stages of Xenopus
development most of the microtubules
have their plus ends pointed towards the
nucleus (Pfeiffer and Gard, 1999), and
therefore it remains unclear how
mRNAs localize in the opposite
direction (Kloc and Etkin, 2005). Other
transport mechanisms might exist – for
instance, the association of Vg1 mRNA
with ER-membrane vesicles (Deshler et
al., 1997).
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Several other proteins have also been
implicated as being part of the
zipcode-binding localization complex:
VgRBP60/PTB/hnRNP I (Cote et al.,
1999); Prrp (Zhao et al., 2001); xStau
(Yoon and Mowry, 2004); VgRBP71
(Kroll et al., 2002); 40LoVe (Czaplinski
et al., 2005). Some of these, like ZBP2,
are predominantly nuclear, which
suggests a nuclear connection for
cytoplasmic localization (Farina and
Singer, 2002; Kress et al., 2004).

Drosophila
Localization of nanos, oskar, bicoid
and gurken mRNAs during
oogenesis
Localized translation is controlled
spatially and temporally in specified
areas in Drosophila oocytes and
embryos. In the oocyte, nanos mRNA is
localized to the posterior during
development, and Nanos protein is
required for the formation of the
anterior-posterior body axis (Gavis and
Lehmann, 1992; Tautz, 1988). Most
nanos mRNA does not localize and is
translationally repressed (Bergsten and
Gavis, 1999) or degraded (Bashirullah et
al., 1999). Posterior-localized nanos
mRNA, however, is stable and
translated. The localization of nanos
mRNA occurs late in oogenesis when
the nurse cells release their cytoplasmic
contents and the mRNA moves into the
oocyte. In contrast to other systems,
nanos mRNA seems to move by
diffusion, enhanced by microtubule-
dependent cytoplasmic streaming, to the
posterior region, where it is anchored to
the actin cytoskeleton (Forrest and
Gavis, 2003). nanos mRNA contains
several regions in its 3� UTR that are
required for its localization (Dahanukar
and Wharton, 1996; Gavis et al., 1996).
One stem-loop element is bound by the
Smaug protein (Smg), which acts in
translational repression of Nanos (Crucs
et al., 2000; Dahanukar et al., 1999;
Smibert et al., 1996).

The localization of nanos mRNA
requires the Oskar protein (Ephrussi
et al., 1991). oskar mRNA is also
localized to the posterior of the embryo
and is one of the first molecules to be
recruited – probably by a kinesin-I-based
mechanism (Brendza et al., 2000).
Although oskar mRNA has a 3� UTR

that is required for its localization (Kim-
Ha et al., 1993), protein components
of the exon-junction-complex (EJC)
accompany the mRNA from the
nucleus to its destination (Hachet and
Ephrussi, 2001; Mohr et al., 2001), and
the splicing reaction itself may be
necessary for oskar mRNA localization
(Hachet and Ephrussi, 2004). Several
other trans-acting factors required have
been identified. Staufen, for example, is
an RBP that colocalizes with oskar
mRNA at the posterior pole and is
required for its localization and
translation (Micklem et al., 2000;
Rongo et al., 1995; St Johnston et al.,
1991).

Staufen is necessary for the localization
of another Drosophila mRNA, bicoid, to
the anterior pole during late stages of
oogenesis (St Johnston et al., 1991),
interacting with stem-loop structures in
the 3� UTR of this mRNA (Ferrandon et
al., 1994). Bicoid is a transcription factor
that diffuses from the anterior pole to
form a gradient throughout the embryo.
During earlier stages of oogenesis, bicoid
localization depends on the Exuperantia
protein (St Johnston et al., 1989) and then
on Swallow protein for anterior anchoring
(Stephenson et al., 1988). bicoid mRNA
is transcribed in the oocyte nurse cells and
then translocates into the oocyte, where it
moves along microtubules (Cha et al.,
2001), connecting through Swallow to a
dynein motor (Duncan and Warrior,
2002; Januschke et al., 2002; Schnorrer et
al., 2000).

Dynein also moves gurken mRNA along
microtubules to the anterior; there it
changes direction moving towards the
oocyte nucleus, where it localizes
(MacDougall et al., 2003). The
localization of Gurken, the Drosophila
homologue of transforming growth
factor � (TGF�), is important for the
establishment of both the antero-
posterior and the dorso-ventral axes.

Localization in the embryo
Later stages of Drosophila development
also require RNA localization events,
which occur after the setting of anterior-
posterior protein gradients in the oocyte.
In the blastoderm embryo, gap genes are
located in broad segments along the
anterior-posterior axis, yielding local

mRNA expression and protein
translation. The differences in
concentrations of gap gene products
such as Krüppel, Hunchback and Giant
give rise to embryo segmentation in
conjunction with localized expression of
pair-rule genes. The pair-rule genes ftz,
hairy and runt are expressed in a
segmental seven-stripe pattern in the
syncytial embryo (Davis and Ish-
Horowicz, 1991). When transcribed,
these transcripts diffuse into the
cytoplasm in all directions and later
localize to their correct positions in RNA
particles, moving on microtubules by
dynein motors (Wilkie and Davis, 2001).
Two other proteins, Bicaudal-D (BicD)
and Egalitarian (Egl), are important for
dynein-mediated transport of localized
mRNAs both in the oocyte and the
embryo (Bullock and Ish-Horowicz,
2001). Egl binds to dynein light chain
and to BicD and might bridge the
connection between the motor and RNA
cargo (Mach and Lehmann, 1997;
Navarro et al., 2004).

Outlook
The list of mRNAs known to be
localized now stands at well over 100. In
neurons alone, the number is probably
even higher. Many questions remain:
what are the complex motor systems that
transport mRNAs and how do they
‘choose’ their respective cargos and
cytoskeletal tracks, do mRNAs commit
to localization in the nucleus, which
proteins cooperate in the assembly of
localization granules, which mRNAs are
co-transported in the same granules and
how is the translation of these mRNAs
regulated? The combination of
molecular and protein strategies in
conjunction with live-cell imaging
techniques should bring us closer to
understanding the different mechanisms
of mRNA localization and how they
evolved in various species. For instance,
following single, localizing mRNAs
indicates that events involving RNA
diffusion, assembly of motor complexes
and interaction with cytoskeletal
filaments are all probabilistic. Having a
zipcode increases the probability of each
of those events that lead to localization
(Fusco et al., 2003). Further analysis of
these factors at the molecular level will
be an important next step in decoding the
localization process.
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